Goto

Collaborating Authors

 Country


Mapping Between Neural and Physical Activities of the Lobster Gastric Mill

Neural Information Processing Systems

Mechanisms of gastric rhythm generation in the isolated stomatogastric ganglion of spiny lobsters: Bursting pacemaker potentials, synaptic interactions and muscarinic modulation.


A Connectionist Symbol Manipulator That Discovers the Structure of Context-Free Languages

Neural Information Processing Systems

We present a neural net architecture that can discover hierarchical and recursive structurein symbol strings. To detect structure at multiple levels, the architecture has the capability of reducing symbols substrings to single symbols, and makes use of an external stack memory. In terms of formal languages, the architecture can learn to parse strings in an LR(O) contextfree grammar.Given training sets of positive and negative exemplars, the architecture has been trained to recognize many different grammars. The architecture has only one layer of modifiable weights, allowing for a straightforward interpretation of its behavior. Many cognitive domains involve complex sequences that contain hierarchical or recursive structure, e.g., music, natural language parsing, event perception. To illustrate, "thespider that ate the hairy fly" is a noun phrase containing the embedded noun phrase "the hairy fly." Understanding such multilevel structures requires forming reduced descriptions (Hinton, 1988) in which a string of symbols or states ("the hairy fly") is reduced to a single symbolic entity (a noun phrase). We present a neural net architecture that learns to encode the structure of symbol strings via such red uction transformations. The difficult problem of extracting multilevel structure from complex, extended sequences has been studied by Mozer (1992), Ring (1993), Rohwer (1990), and Schmidhuber (1992), among others.


Non-Linear Dimensionality Reduction

Neural Information Processing Systems

A method for creating a nonlinear encoder-decoder for multidimensional data with compact representations is presented. The commonly used technique of autoassociation is extended to allow nonlinear representations, and an objective functionwhich penalizes activations of individual hidden units is shown to result in minimum dimensional encodings with respect to allowable error in reconstruction. 1 INTRODUCTION Reducing dimensionality of data with minimal information loss is important for feature extraction, compact coding and computational efficiency. The data can be tranformed into "good" representations for further processing, constraints among feature variables may be identified, and redundancy eliminated. Many algorithms are exponential in the dimensionality of the input, thus even reduction by a single dimension may provide valuable computational savings. Autoassociating feedforward networks with one hidden layer have been shown to extract the principal components of the data (Baldi & Hornik, 1988). Such networks have been used to extract features and develop compact encodings of the data (Cottrell, Munro & Zipser, 1989). Principal Components Analysis projects the data into a linear subspace -email: demers@cs.ucsd.edu



A Hybrid Linear/Nonlinear Approach to Channel Equalization Problems

Neural Information Processing Systems

Channel equalization problem is an important problem in high-speed communications. The sequences of symbols transmitted are distorted by neighboring symbols. Traditionally, the channel equalization problem is considered as a channel-inversion operation. One problem of this approach is that there is no direct correspondence between error probability andresidual error produced by the channel inversion operation. In this paper, the optimal equalizer design is formulated as a classification problem. The optimal classifier can be constructed by Bayes decision rule. In general it is nonlinear. An efficient hybrid linear/nonlinear equalizer approach has been proposed to train the equalizer. The error probability of new linear/nonlinear equalizer has been shown to be better thana linear equalizer in an experimental channel. 1 INTRODUCTION


Learning to See Where and What: Training a Net to Make Saccades and Recognize Handwritten Characters

Neural Information Processing Systems

This paper describes an approach to integrated segmentation and recognition of hand-printed characters. The approach, called Saccade, integrates ballistic and corrective saccades (eye movements) with character recognition. A single backpropagation net is trained to make a classification decision on a character centered in its input window, as well as to estimate the distance of the current and next character from the center of the input window. The net learns to accurately estimate these distances regardless of variations in character width, spacing between characters, writing style and other factors.



Spiral Waves in Integrate-and-Fire Neural Networks

Neural Information Processing Systems

The formation of propagating spiral waves is studied in a randomly connected neural network composed of integrate-and-fire neurons with recovery period and excitatory connections using computer simulations. Network activity is initiated by periodic stimulation at a single point. The results suggest that spiral waves can arise in such a network via a sub-critical Hopf bifurcation. 1 Introduction


Summed Weight Neuron Perturbation: An O(N) Improvement Over Weight Perturbation

Neural Information Processing Systems

The algorithm presented performs gradient descent on the weight space of an Artificial Neural Network (ANN), using a finite difference to approximate the gradient The method is novel in that it achieves a computational complexitysimilar to that of Node Perturbation, O(N3), but does not require access to the activity of hidden or internal neurons. This is possible due to a stochastic relation between perturbations at the weights and the neurons of an ANN. The algorithm is also similar to Weight Perturbation in that it is optimal in terms of hardware requirements whenused for the training ofVLSI implementations of ANN's.


Biologically Plausible Local Learning Rules for the Adaptation of the Vestibulo-Ocular Reflex

Neural Information Processing Systems

Lisberger Department of Physiology W.M. Keck Foundation Center for Integrative Neuroscience University of California, San Fransisco, CA, 94143 Abstract The vestibulo-ocular reflex (VOR) is a compensatory eye movement that stabilizes images on the retina during head turns. Its magnitude, or gain, can be modified by visual experience during head movements. Possible learning mechanisms for this adaptation have been explored in a model of the oculomotor system based on anatomical and physiological constraints. Thelocal correlational learning rules in our model reproduce the adaptation and behavior of the VOR under certain parameter conditions. From these conditions, predictions for the time course of adaptation at the learning sites are made. 1 INTRODUCTION The primate oculomotor system is capable of maintaining the image of an object on the fovea even when the head and object are moving simultaneously.