Country
Convergence of Stochastic Iterative Dynamic Programming Algorithms
Jaakkola, Tommi, Jordan, Michael I., Singh, Satinder P.
Increasing attention has recently been paid to algorithms based on dynamic programming (DP) due to the suitability of DP for learning problems involving control. In stochastic environments where the system being controlled is only incompletely known, however, a unifying theoretical account of these methods has been missing. In this paper we relate DPbased learning algorithms to the powerful techniques of stochastic approximation via a new convergence theorem, enabling us to establish a class of convergent algorithms to which both TD("\) and Q-Iearning belong. 1 INTRODUCTION Learning to predict the future and to find an optimal way of controlling it are the basic goals of learning systems that interact with their environment. A variety of algorithms are currently being studied for the purposes of prediction and control in incompletely specified, stochastic environments. Here we consider learning algorithms defined in Markov environments. There are actions or controls (u) available for the learner that affect both the state transition probabilities, and the probability distribution for the immediate, state dependent costs (Ci(u)) incurred by the learner.
Speaker Recognition Using Neural Tree Networks
Farrell, Kevin R., Mammone, Richard J.
A new classifier is presented for text-independent speaker recognition. The new classifier is called the modified neural tree network (MNTN). The NTN is a hierarchical classifier that combines the properties of decision trees and feed-forward neural networks. The MNTN differs from the standard NTN in that a new learning rule based on discriminant learning is used, which minimizes the classification error as opposed to a norm of the approximation error. The MNTN also uses leaf probability measures in addition to the class labels.
Putting It All Together: Methods for Combining Neural Networks
The past several years have seen a tremendous growth in the complexity of the recognition, estimation and control tasks expected of neural networks. In solving these tasks, one is faced with a large variety of learning algorithms and a vast selection of possible network architectures. After all the training, how does one know which is the best network? This decision is further complicated by the fact that standard techniques can be severely limited by problems such as over-fitting, data sparsity and local optima. The usual solution to these problems is a winner-take-all cross-validatory model selection.
Inverse Dynamics of Speech Motor Control
Hirayama, Makoto, Vatikiotis-Bateson, Eric, Kawato, Mitsuo
This inverse dynamics model allows the use of a faster speech mot.or control scheme, which can be applied to phoneme-tospeech synthesis via musclo-skeletal system dynamics, or to future use in speech recognition. The forward acoustic model, which is the mapping from articulator trajectories t.o the acoustic parameters, was improved by adding velocity and voicing information inputs to distinguish acollst.ic
Learning in Compositional Hierarchies: Inducing the Structure of Objects from Data
Model-based object recognition solves the problem of invariant recognition by relying on stored prototypes at unit scale positioned at the origin of an object-centered coordinate system. Elastic matching techniques are used to find a correspondence between features of the stored model and the data and can also compute the parameters of the transformation the observed instance has undergone relative to the stored model.
Memory-Based Methods for Regression and Classification
Dietterich, Thomas G., Wettschereck, Dietrich, Atkeson, Chris G., Moore, Andrew W.
Memory-based learning methods operate by storing all (or most) of the training data and deferring analysis of that data until "run time" (i.e., when a query is presented and a decision or prediction must be made). When a query is received, these methods generally answer the query by retrieving and analyzing a small subset of the training data-namely, data in the immediate neighborhood of the query point. In short, memory-based methods are "lazy" (they wait until the query) and "local" (they use only a local neighborhood). The purpose of this workshop was to review the state-of-the-art in memory-based methods and to understand their relationship to "eager" and "global" learning algorithms such as batch backpropagation. There are two essential components to any memory-based algorithm: the method for defining the "local neighborhood" and the learning method that is applied to the training examples in the local neighborhood.
Asynchronous Dynamics of Continuous Time Neural Networks
Wang, Xin, Li, Qingnan, Blum, Edward K.
Motivated by mathematical modeling, analog implementation and distributed simulation of neural networks, we present a definition of asynchronous dynamics of general CT dynamical systems defined by ordinary differential equations, based on notions of local times and communication times. We provide some preliminary results on globally asymptotical convergence of asynchronous dynamics for contractive and monotone CT dynamical systems. When applying the results to neural networks, we obtain some conditions that ensure additive-type neural networks to be asynchronizable.