Goto

Collaborating Authors

 Country


Representation and Induction of Finite State Machines using Time-Delay Neural Networks

Neural Information Processing Systems

This work investigates the representational and inductive capabilities oftime-delay neural networks (TDNNs) in general, and of two subclasses of TDNN, those with delays only on the inputs (IDNN), and those which include delays on hidden units (HDNN). Both architectures arecapable of representing the same class of languages, the definite memory machine (DMM) languages, but the delays on the hidden units in the HDNN helps it outperform the IDNN on problems composed of repeated features over short time windows. 1 Introduction In this paper we consider the representational and inductive capabilities of timedelay neuralnetworks (TDNN) [Waibel et al., 1989] [Lang et al., 1990], also known as NNFIR [Wan, 1993]. A TDNN is a feed-forward network in which the set of inputs to any node i may include the output from previous layers not only in the current time step t, but from d earlier time steps as well. The activation function 404 D.S. Clouse, C. L Giles, B. G. Home and G. W. Cottrell for node i at time t in such a network is given by equation 1: TDNNs have been used in speech recognition [Waibel et al., 1989], and time series prediction [Wan, 1993]. In this paper we concentrate on the language induction problem.


Neural Models for Part-Whole Hierarchies

Neural Information Processing Systems

We present a connectionist method for representing images that explicitly addressestheir hierarchical nature. It blends data from neuroscience aboutwhole-object viewpoint sensitive cells in inferotemporal cortex8 and attentional basis-field modulation in V43 with ideas about hierarchical descriptions based on microfeatures.5,11 The resulting model makes critical use of bottom-up and top-down pathways for analysis and synthesis.


Adaptive On-line Learning in Changing Environments

Neural Information Processing Systems

An adaptive online algorithm extending the learning of learning idea is proposed and theoretically motivated. Relying only on gradient flowinformation it can be applied to learning continuous functions or distributions, even when no explicit loss function is given andthe Hessian is not available. Its efficiency is demonstrated for a non-stationary blind separation task of acoustic signals. 1 Introduction Neural networks provide powerful tools to capture the structure in data by learning. Often the batch learning paradigm is assumed, where the learner is given all training examplessimultaneously and allowed to use them as often as desired. In large practical applications batch learning is often experienced to be rather infeasible and instead online learning is employed.


Dual Kalman Filtering Methods for Nonlinear Prediction, Smoothing and Estimation

Neural Information Processing Systems

Prediction, estimation, and smoothing are fundamental to signal processing. To perform these interrelated tasks given noisy data, we form a time series model of the process that generates the data. Taking noise in the system explicitly into account, maximumlikelihood andKalman frameworks are discussed which involve the dual process of estimating both the model parameters and the underlying stateof the system. We review several established methods in the linear case, and propose severa!


Probabilistic Interpretation of Population Codes

Neural Information Processing Systems

We present a theoretical framework for population codes which generalizes naturally to the important case where the population provides information about a whole probability distribution over an underlying quantity rather than just a single value. We use the framework to analyze two existing models, and to suggest and evaluate a third model for encoding such probability distributions.


Clustering Sequences with Hidden Markov Models

Neural Information Processing Systems

This paper discusses a probabilistic model-based approach to clustering sequences, using hidden Markov models (HMMs). The problem can be framed as a generalization of the standard mixture model approach to clustering in feature space. Two primary issues are addressed. First, a novel parameter initialization procedure is proposed, and second, the more difficult problem of determining the number of clusters K, from the data, is investigated. Experimental results indicate that the proposed techniques are useful for revealing hidden cluster structure in data sets of sequences.


On a Modification to the Mean Field EM Algorithm in Factorial Learning

Neural Information Processing Systems

A modification is described to the use of mean field approximations in the E step of EM algorithms for analysing data from latent structure models, as described by Ghahramani (1995), among others. The modification involves second-order Taylor approximations to expectations computed in the E step. The potential benefits of the method are illustrated using very simple latent profile models.


Unification of Information Maximization and Minimization

Neural Information Processing Systems

In the present paper, we propose a method to unify information maximization and minimization in hidden units. The information maximization and minimization are performed on two different levels: collective and individual level. Thus, two kinds of information: collective and individual information are defined. By maximizing collective information and by minimizing individual information, simple networks can be generated in terms of the number of connections and the number of hidden units. Obtained networks are expected to give better generalization and improved interpretation of internal representations.



Smoothing Regularizers for Projective Basis Function Networks

Neural Information Processing Systems

Smoothing regularizers for radial basis functions have been studied extensively, but no general smoothing regularizers for projective basis junctions (PBFs), such as the widely-used sigmoidal PBFs, have heretofore been proposed. We derive new classes of algebraically-simple mH'-order smoothing regularizers for networks of the form f(W, x)