Goto

Collaborating Authors

 Country


A Distributed Process Infrastructure for a Distributed Data Structure

arXiv.org Artificial Intelligence

The Resource Description Framework (RDF) is continuing to grow outside the bounds of its initial function as a metadata framework and into the domain of general-purpose data modeling. This expansion has been facilitated by the continued increase in the capacity and speed of RDF database repositories known as triple-stores. High-end RDF triple-stores can hold and process on the order of 10 billion triples. In an effort to provide a seamless integration of the data contained in RDF repositories, the Linked Data community is providing specifications for linking RDF data sets into a universal distributed graph that can be traversed by both man and machine. While the seamless integration of RDF data sets is important, at the scale of the data sets that currently exist and will ultimately grow to become, the "download and index" philosophy of the World Wide Web will not so easily map over to the Semantic Web. This essay discusses the importance of adding a distributed RDF process infrastructure to the current distributed RDF data structure.


A new probabilistic transformation of belief mass assignment

arXiv.org Artificial Intelligence

In this paper, we propose in Dezert-Smarandache Theory (DSmT) framework, a new probabilistic transformation, called DSmP, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the DSmP transformation works and we compare it to main existing transformations proposed in the literature so far. We show the advantages of DSmP over classical transformations in term of Probabilistic Information Content (PIC). The direct extension of this transformation for dealing with qualitative belief assignments is also presented.


Implementing general belief function framework with a practical codification for low complexity

arXiv.org Artificial Intelligence

In this chapter, we propose a new practical codification of the elements of the Venn diagram in order to easily manipulate the focal elements. In order to reduce the complexity, the eventual constraints must be integrated in the codification at the beginning. Hence, we only consider a reduced hyper power set $D_r^\Theta$ that can be $2^\Theta$ or $D^\Theta$. We describe all the steps of a general belief function framework. The step of decision is particularly studied, indeed, when we can decide on intersections of the singletons of the discernment space no actual decision functions are easily to use. Hence, two approaches are proposed, an extension of previous one and an approach based on the specificity of the elements on which to decide. The principal goal of this chapter is to provide practical codes of a general belief function framework for the researchers and users needing the belief function theory.


Constructing a Knowledge Base for Gene Regulatory Dynamics by Formal Concept Analysis Methods

arXiv.org Artificial Intelligence

Our aim is to build a set of rules, such that reasoning over temporal dependencies within gene regulatory networks is possible. The underlying transitions may be obtained by discretizing observed time series, or they are generated based on existing knowledge, e.g. by Boolean networks or their nondeterministic generalization. We use the mathematical discipline of formal concept analysis (FCA), which has been applied successfully in domains as knowledge representation, data mining or software engineering. By the attribute exploration algorithm, an expert or a supporting computer program is enabled to decide about the validity of a minimal set of implications and thus to construct a sound and complete knowledge base. From this all valid implications are derivable that relate to the selected properties of a set of genes. We present results of our method for the initiation of sporulation in Bacillus subtilis. However the formal structures are exhibited in a most general manner. Therefore the approach may be adapted to signal transduction or metabolic networks, as well as to discrete temporal transitions in many biological and nonbiological areas.


Text Data Mining: Theory and Methods

arXiv.org Machine Learning

This paper provides the reader with a very brief introduction to some of the theory and methods of text data mining. The intent of this article is to introduce the reader to some of the current methodologies that are employed within this discipline area while at the same time making the reader aware of some of the interesting challenges that remain to be solved within the area. Finally, the articles serves as a very rudimentary tutorial on some of techniques while also providing the reader with a list of references for additional study.


CPBVP: A Constraint-Programming Framework for Bounded Program Verification

arXiv.org Artificial Intelligence

This paper studies how to verify the conformity of a program with its specification and proposes a novel constraint-programming framework for bounded program verification (CPBPV). The CPBPV framework uses constraint stores to represent the specification and the program and explores execution paths nondeterministically. The input program is partially correct if each constraint store so produced implies the post-condition. CPBPV does not explore spurious execution paths as it incrementally prunes execution paths early by detecting that the constraint store is not consistent. CPBPV uses the rich language of constraint programming to express the constraint store. Finally, CPBPV is parametrized with a list of solvers which are tried in sequence, starting with the least expensive and less general. Experimental results often produce orders of magnitude improvements over earlier approaches, running times being often independent of the variable domains. Moreover, CPBPV was able to detect subtle errors in some programs while other frameworks based on model checking have failed.


An Algorithm to Determine Peer-Reviewers

arXiv.org Artificial Intelligence

The peer-review process is the most widely accepted certification mechanism for officially accepting the written results of researchers within the scientific community. An essential component of peer-review is the identification of competent referees to review a submitted manuscript. This article presents an algorithm to automatically determine the most appropriate reviewers for a manuscript by way of a co-authorship network data structure and a relative-rank particle-swarm algorithm. This approach is novel in that it is not limited to a pre-selected set of referees, is computationally efficient, requires no human-intervention, and, in some instances, can automatically identify conflict of interest situations. A useful application of this algorithm would be to open commentary peer-review systems because it provides a weighting for each referee with respects to their expertise in the domain of a manuscript. The algorithm is validated using referee bid data from the 2005 Joint Conference on Digital Libraries.


Gaussian Processes and Limiting Linear Models

arXiv.org Machine Learning

Gaussian processes retain the linear model either as a special case, or in the limit. We show how this relationship can be exploited when the data are at least partially linear. However from the perspective of the Bayesian posterior, the Gaussian processes which encode the linear model either have probability of nearly zero or are otherwise unattainable without the explicit construction of a prior with the limiting linear model in mind. We develop such a prior, and show that its practical benefits extend well beyond the computational and conceptual simplicity of the linear model. For example, linearity can be extracted on a per-dimension basis, or can be combined with treed partition models to yield a highly efficient nonstationary model. Our approach is demonstrated on synthetic and real datasets of varying linearity and dimensionality.


Algorithm Selection as a Bandit Problem with Unbounded Losses

arXiv.org Artificial Intelligence

Algorithm selection is typically based on models of algorithm performance, learned during a separate offline training sequence, which can be prohibitively expensive. In recent work, we adopted an online approach, in which a performance model is iteratively updated and used to guide selection on a sequence of problem instances. The resulting exploration-exploitation trade-off was represented as a bandit problem with expert advice, using an existing solver for this game, but this required the setting of an arbitrary bound on algorithm runtimes, thus invalidating the optimal regret of the solver. In this paper, we propose a simpler framework for representing algorithm selection as a bandit problem, with partial information, and an unknown bound on losses. We adapt an existing solver to this game, proving a bound on its expected regret, which holds also for the resulting algorithm selection technique. We present preliminary experiments with a set of SAT solvers on a mixed SAT-UNSAT benchmark.


Representation Discovery using Harmonic Analysis

Morgan & Claypool Publishers

Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? It presents a general approach to representation discovery using the framework of harmonic analysis, in particular Fourier and wavelet analysis. ISBN 9781598296594, 147 pages.