Country
Horn Belief Contraction: Remainders, Envelopes and Complexity
Adaricheva, Kira (Yeshiva University) | Sloan, Robert H. (University of Illinois at Chicago) | Szörényi, Balász (Hungarian Academy of Sciences and University of Szeged) | Turán, György (University of Illinois at Chicago, Hungarian Academy of Sciences, and University of Szeged)
Belief change studies how to update knowledge bases used for reasoning. Traditionally belief revision has been based on full propositional logic. However, reasoning with full propositional knowledge bases is computationally hard, whereas reasoning with Horn knowledge bases is fast. In the past several years, there has been considerable work in belief revision theory on developing a theory of belief contraction for knowledge represented in Horn form. Our main focus here is the computational complexity of belief contraction, and, in particular, of various methods and approaches suggested in the literature. This is a natural and important question, especially in connection with one of the primary motivations for considering Horn representation: efficiency. The problems considered lead to questions about Horn envelopes (or Horn LUBs), introduced earlier in the context of knowledge compilation. This work gives a syntactic characterization of the remainders of a Horn belief set with respect to a consequence to be contracted, as the Horn envelopes of the belief set and an elementary conjunction corresponding to a truth assignment satisfying a certain explicitly given formula. This gives an efficient algorithm to generate all remainders, each represented by a truth assignment. On the negative side, examples are given of Horn belief sets and consequences where Horn formulas representing the result of contraction, based either on remainders or on weak remainders, must have exponential size for almost all possible choice functions (i.e., different possible choices of partial meet contraction). Therefore using the Horn framework for belief contraction does not by itself give us computational efficiency. Further work is required to explore the possibilities for efficient belief change methods.
Information Forests
Yi, Zhao, Soatto, Stefano, Dewan, Maneesh, Zhan, Yiqiang
We describe Information Forests, an approach to classification that generalizes Random Forests by replacing the splitting criterion of non-leaf nodes from a discriminative one -- based on the entropy of the label distribution -- to a generative one -- based on maximizing the information divergence between the class-conditional distributions in the resulting partitions. The basic idea consists of deferring classification until a measure of "classification confidence" is sufficiently high, and instead breaking down the data so as to maximize this measure. In an alternative interpretation, Information Forests attempt to partition the data into subsets that are "as informative as possible" for the purpose of the task, which is to classify the data. Classification confidence, or informative content of the subsets, is quantified by the Information Divergence. Our approach relates to active learning, semi-supervised learning, mixed generative/discriminative learning.
Algebraic Geometric Comparison of Probability Distributions
Kiraly, Franz J., von Buenau, Paul, Meinecke, Frank C., Blythe, Duncan A. J., Mueller, Klaus-Robert
We propose a novel algebraic framework for treating probability distributions represented by their cumulants such as the mean and covariance matrix. As an example, we consider the unsupervised learning problem of finding the subspace on which several probability distributions agree. Instead of minimizing an objective function involving the estimated cumulants, we show that by treating the cumulants as elements of the polynomial ring we can directly solve the problem, at a lower computational cost and with higher accuracy. Moreover, the algebraic viewpoint on probability distributions allows us to invoke the theory of Algebraic Geometry, which we demonstrate in a compact proof for an identifiability criterion.
Modification of the Elite Ant System in Order to Avoid Local Optimum Points in the Traveling Salesman Problem
Yousefikhoshbakht, Majid, Didehvar, Farzad, Rahmati, Farhad
This article presents a new algorithm which is a modified version of the elite ant system (EAS) algorithm. The new version utilizes an effective criterion for escaping from the local optimum points. In contrast to the classical EAC algorithms, the proposed algorithm uses only a global updating, which will increase pheromone on the edges of the best (i.e. the shortest) route and will at the same time decrease the amount of pheromone on the edges of the worst (i.e. the longest) route. In order to assess the efficiency of the new algorithm, some standard traveling salesman problems (TSPs) were studied and their results were compared with classical EAC and other well-known meta-heuristic algorithms. The results indicate that the proposed algorithm has been able to improve the efficiency of the algorithms in all instances and it is competitive with other algorithms.
Optimization in SMT with LA(Q) Cost Functions
Sebastiani, Roberto, Tomasi, Silvia
In the contexts of automated reasoning and formal verification, important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, very few work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of LA(Q) cost functions, combining SMT with standard minimization techniques. We have implemented the proposed approach within the MathSAT SMT solver. Due to the lack of competitors in AR and SMT domains, we experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.
Minimax Rates of Estimation for Sparse PCA in High Dimensions
We study sparse principal components analysis in the high-dimensional setting, where $p$ (the number of variables) can be much larger than $n$ (the number of observations). We prove optimal, non-asymptotic lower and upper bounds on the minimax estimation error for the leading eigenvector when it belongs to an $\ell_q$ ball for $q \in [0,1]$. Our bounds are sharp in $p$ and $n$ for all $q \in [0, 1]$ over a wide class of distributions. The upper bound is obtained by analyzing the performance of $\ell_q$-constrained PCA. In particular, our results provide convergence rates for $\ell_1$-constrained PCA.
Beta-Negative Binomial Process and Poisson Factor Analysis
Zhou, Mingyuan, Hannah, Lauren, Dunson, David, Carin, Lawrence
A beta-negative binomial (BNB) process is proposed, leading to a beta-gamma-Poisson process, which may be viewed as a "multi-scoop" generalization of the beta-Bernoulli process. The BNB process is augmented into a beta-gamma-gamma-Poisson hierarchical structure, and applied as a nonparametric Bayesian prior for an infinite Poisson factor analysis model. A finite approximation for the beta process Levy random measure is constructed for convenient implementation. Efficient MCMC computations are performed with data augmentation and marginalization techniques. Encouraging results are shown on document count matrix factorization.
Improving feature selection algorithms using normalised feature histograms
James, Alex Pappachen, Maan, Akshay
The proposed feature selection method builds a histogram of the most stable features from random subsets of a training set and ranks the features based on a classifier based cross-validation. This approach reduces the instability of features obtained by conventional feature selection methods that occur with variation in training data and selection criteria. Classification results on four microarray and three image datasets using three major feature selection criteria and a naive Bayes classifier show considerable improvement over benchmark results.
A Reconstruction Error Formulation for Semi-Supervised Multi-task and Multi-view Learning
Qian, Buyue, Wang, Xiang, Davidson, Ian
A significant challenge to make learning techniques more suitable for general purpose use is to move beyond i) complete supervision, ii) low dimensional data, iii) a single task and single view per instance. Solving these challenges allows working with "Big Data" problems that are typically high dimensional with multiple (but possibly incomplete) labelings and views. While other work has addressed each of these problems separately, in this paper we show how to address them together, namely semi-supervised dimension reduction for multi-task and multi-view learning (SSDR-MML), which performs optimization for dimension reduction and label inference in semi-supervised setting. The proposed framework is designed to handle both multi-task and multi-view learning settings, and can be easily adapted to many useful applications. Information obtained from all tasks and views is combined via reconstruction errors in a linear fashion that can be efficiently solved using an alternating optimization scheme. Our formulation has a number of advantages. We explicitly model the information combining mechanism as a data structure (a weight/nearest-neighbor matrix) which allows investigating fundamental questions in multi-task and multi-view learning. We address one such question by presenting a general measure to quantify the success of simultaneous learning of multiple tasks or from multiple views. We show that our SSDR-MML approach can outperform many state-of-the-art baseline methods and demonstrate the effectiveness of connecting dimension reduction and learning.
Peek Arc Consistency
This paper studies peek arc consistency, a reasoning technique that extends the well-known arc consistency technique for constraint satisfaction. In contrast to other more costly extensions of arc consistency that have been studied in the literature, peek arc consistency requires only linear space and quadratic time and can be parallelized in a straightforward way such that it runs in linear time with a linear number of processors. We demonstrate that for various constraint languages, peek arc consistency gives a polynomial-time decision procedure for the constraint satisfaction problem. We also present an algebraic characterization of those constraint languages that can be solved by peek arc consistency, and study the robustness of the algorithm.