Country
A Non-Parametric Multi-Scale Statistical Model for Natural Images
Bonet, Jeremy S. De, Viola, Paul A.
The observed distribution of natural images is far from uniform. On the contrary, real images have complex and important structure that can be exploited for image processing, recognition and analysis. There have been many proposed approaches to the principled statistical modeling of images, but each has been limited in either the complexity of the models or the complexity of the images. We present a nonparametric multi-scale statistical model for images that can be used for recognition, image de-noising, and in a "generative mode" to synthesize high quality textures.
Analysis of Drifting Dynamics with Neural Network Hidden Markov Models
Kohlmorgen, Jens, Müller, Klaus-Robert, Pawelzik, Klaus
We present a method for the analysis of nonstationary time series with multiple operating modes. In particular, it is possible to detect and to model both a switching of the dynamics and a less abrupt, time consuming drift from one mode to another. This is achieved in two steps. First, an unsupervised training method provides prediction experts for the inherent dynamical modes. Then, the trained experts are used in a hidden Markov model that allows to model drifts. An application to physiological wake/sleep data demonstrates that analysis and modeling of real-world time series can be improved when the drift paradigm is taken into account.
Correlates of Attention in a Model of Dynamic Visual Recognition
Given a set of objects in the visual field, how does the the visual system learn to attend to a particular object of interest while ignoring the rest? How are occlusions and background clutter so effortlessly discounted for when recognizing a familiar object? In this paper, we attempt to answer these questions in the context of a Kalman filter-based model of visual recognition that has previously proved useful in explaining certain neurophysiological phenomena such as endstopping and related extra-classical receptive field effects in the visual cortex. By using results from the field of robust statistics, we describe an extension of the Kalman filter model that can handle multiple objects in the visual field. The resulting robust Kalman filter model demonstrates how certain forms of attention can be viewed as an emergent property of the interaction between top-down expectations and bottom-up signals.
A Neural Network Model of Naive Preference and Filial Imprinting in the Domestic Chick
Filial imprinting in domestic chicks is of interest in psychology, biology, and computational modeling because it exemplifies simple, rapid, innately programmed learning which is biased toward learning about some objects. Hom et al. have recently discovered a naive visual preference for heads and necks which develops over the course of the first three days of life. The neurological basis of this predisposition is almost entirely unknown; that of imprinting-related learning is fairly clear. This project is the first model of the predisposition consistent with what is known about learning in imprinting. The model develops the predisposition appropriately, learns to "approach" a training object, and replicates one interaction between the two processes. Future work will replicate more interactions between imprinting and the predisposition in chicks, and analyze why the system works.
Estimating Dependency Structure as a Hidden Variable
Meila, Marina, Jordan, Michael I.
This paper introduces a probability model, the mixture of trees that can account for sparse, dynamically changing dependence relationships. We present a family of efficient algorithms that use EM and the Minimum Spanning Tree algorithm to find the ML and MAP mixture of trees for a variety of priors, including the Dirichlet and the MDL priors.
Globally Optimal On-line Learning Rules
We present a method for determining the globally optimal online learning rule for a soft committee machine under a statistical mechanics framework. This work complements previous results on locally optimal rules, where only the rate of change in generalization the total reduction inerror was considered. We maximize the whole learning process and show howgeneralization error over the resulting rule can significantly outperform the locally optimal rule. 1 Introduction We consider a learning scenario in which a feed-forward neural network model (the an unknown mapping (the teacher), given a set of training examplesstudent) emulates The performance of the student network is typicallyproduced by the teacher. A common form of training is online learning, where training patterns are presented sequentially and independently to the network at each learning step. This form of training can be beneficial in terms of both storage and computation time, especially for large systems.
Reinforcement Learning for Call Admission Control and Routing in Integrated Service Networks
Marbach, Peter, Mihatsch, Oliver, Schulte, Miriam, Tsitsiklis, John N.
Peter Dayan E25-210, MIT Cambridge, MA 02139 We provide a model of the standard watermaze task, and of a more challenging task involving novel platform locations, in which rats exhibit one-trial learning after a few days of training. The model uses hippocampal place cells to support reinforcement learning, and also, in an integrated manner, to build and use allocentric coordinates. 1 INTRODUCTION