Goto

Collaborating Authors

 Country


Semi-Supervised Multitask Learning

Neural Information Processing Systems

A semi-supervised multitask learning (MTL) framework is presented, in which M parameterized semi-supervised classifiers, each associated with one of M partially labeleddata manifolds, are learned jointly under the constraint of a softsharing priorimposed over the parameters of the classifiers. The unlabeled data are utilized by basing classifier learning on neighborhoods, induced by a Markov random walk over a graph representation of each manifold. Experimental results on real data sets demonstrate that semi-supervised MTL yields significant improvements ingeneralization performance over either semi-supervised single-task learning (STL) or supervised MTL.


Colored Maximum Variance Unfolding

Neural Information Processing Systems

Maximum variance unfolding (MVU) is an effective heuristic for dimensionality reduction. It produces a low-dimensional representation of the data by maximizing thevariance of their embeddings while preserving the local distances of the original data. We show that MVU also optimizes a statistical dependence measure which aims to retain the identity of individual observations under the distancepreserving constraints.This general view allows us to design "colored" variants of MVU, which produce low-dimensional representations for a given task, e.g.



Parallelizing Support Vector Machines on Distributed Computers

Neural Information Processing Systems

Support Vector Machines (SVMs) suffer from a widely recognized scalability problem in both memory use and computational time. To improve scalability, we have developed a parallel SVM algorithm (PSVM), which reduces memory use through performing a row-based, approximate matrix factorization, and which loads only essential data to each machine to perform parallel computation. Let $n$ denote the number of training instances, $p$ the reduced matrix dimension after factorization ($p$ is significantly smaller than $n$), and $m$ the number of machines. PSVM reduces the memory requirement from $\MO$($n^2$) to $\MO$($np/m$), and improves computation time to $\MO$($np^2/m$). Empirical studies on up to $500$ computers shows PSVM to be effective.




Congruence between model and human attention reveals unique signatures of critical visual events

Neural Information Processing Systems

Current computational models of bottom-up and top-down components of attention arepredictive of eye movements across a range of stimuli and of simple, fixed visual tasks (such as visual search for a target among distractors). However, todate there exists no computational framework which can reliably mimic human gaze behavior in more complex environments and tasks, such as driving a vehicle through traffic. Here, we develop a hybrid computational/behavioral framework, combining simple models for bottom-up salience and top-down relevance, andlooking for changes in the predictive power of these components at different critical event times during 4.7 hours (500,000 video frames) of observers playing car racing and flight combat video games. This approach is motivated by our observation that the predictive strengths of the salience and relevance models exhibitreliable temporal signatures during critical event windows in the task sequence--for example, when the game player directly engages an enemy plane in a flight combat game, the predictive strength of the salience model increases significantly, while that of the relevance model decreases significantly. Our new framework combines these temporal signatures to implement several event detectors. Critically,we find that an event detector based on fused behavioral and stimulus information (in the form of the model's predictive strength) is much stronger than detectors based on behavioral information alone (eye position) or image information alone(model prediction maps). This approach to event detection, based on eye tracking combined with computational models applied to the visual input, may have useful applications as a less-invasive alternative to other event detection approaches based on neural signatures derived from EEG or fMRI recordings.



Computing Robust Counter-Strategies

Neural Information Processing Systems

Adaptation to other initially unknown agents often requires computing an effective counter-strategy. In the Bayesian paradigm, one must find a good counter-strategy to the inferred posterior of the other agents' behavior. In the experts paradigm, one may want to choose experts that are good counter-strategies to the other agents' expected behavior. In this paper we introduce a technique for computing robust counter-strategies for adaptation in multiagent scenarios under a variety of paradigms. The strategies can take advantage of a suspected tendency in the decisions of the other agents, while bounding the worst-case performance when the tendency is not observed. The technique involves solving a modified game, and therefore can make use of recently developed algorithms for solving very large extensive games. We demonstrate the effectiveness of the technique in two-player Texas Hold'em. We show that the computed poker strategies are substantially more robust than best response counter-strategies, while still exploiting a suspected tendency. We also compose the generated strategies in an experts algorithm showing a dramatic improvement in performance over using simple best responses.