Country
An Intelligent Location Management approaches in GSM Mobile Network
Location management refers to the problem of updating and searching the current location of mobile nodes in a wireless network. To make it efficient, the sum of update costs of location database must be minimized. Previous work relying on fixed location databases is unable to fully exploit the knowledge of user mobility patterns in the system so as to achieve this minimization. The study presents an intelligent location management approach which has interacts between intelligent information system and knowledge-base technologies, so we can dynamically change the user patterns and reduce the transition between the VLR and HLR. The study provides algorithms are ability to handle location registration and call delivery
Fast projections onto mixed-norm balls with applications
Joint sparsity offers powerful structural cues for feature selection, especially for variables that are expected to demonstrate a "grouped" behavior. Such behavior is commonly modeled via group-lasso, multitask lasso, and related methods where feature selection is effected via mixed-norms. Several mixed-norm based sparse models have received substantial attention, and for some cases efficient algorithms are also available. Surprisingly, several constrained sparse models seem to be lacking scalable algorithms. We address this deficiency by presenting batch and online (stochastic-gradient) optimization methods, both of which rely on efficient projections onto mixed-norm balls. We illustrate our methods by applying them to the multitask lasso. We conclude by mentioning some open problems.
Development of knowledge Base Expert System for Natural treatment of Diabetes disease
The development of expert system for treatment of Diabetes disease by using natural methods is new information technology derived from Artificial Intelligent research using ESTA (Expert System Text Animation) System. The proposed expert system contains knowledge about various methods of natural treatment methods (Massage, Herbal/Proper Nutrition, Acupuncture, Gems) for Diabetes diseases of Human Beings. The system is developed in the ESTA (Expert System shell for Text Animation) which is Visual Prolog 7.3 Application. The knowledge for the said system will be acquired from domain experts, texts and other related sources.
Tight Sample Complexity of Large-Margin Learning
Sabato, Sivan, Srebro, Nathan, Tishby, Naftali
We obtain a tight distribution-specific characterization of the sample complexity of large-margin classification with L_2 regularization: We introduce the \gamma-adapted-dimension, which is a simple function of the spectrum of a distribution's covariance matrix, and show distribution-specific upper and lower bounds on the sample complexity, both governed by the \gamma-adapted-dimension of the source distribution. We conclude that this new quantity tightly characterizes the true sample complexity of large-margin classification. The bounds hold for a rich family of sub-Gaussian distributions.
Mouse Simulation Using Two Coloured Tapes
Kumar, Vikram, Niyazi, Kamran, Mahe, Swapnil, Vyawahare, Swapnil
In this paper, we present a novel approach for Human Computer Interaction (HCI) where, we control cursor movement using a real-time camera. Current methods involve changing mouse parts such as adding more buttons or changing the position of the tracking ball. Instead, our method is to use a camera and computer vision technology, such as image segmentation and gesture recognition, to control mouse tasks (left and right clicking, double-clicking, and scrolling) and we show how it can perform everything as current mouse devices can. The software will be developed in JAVA language. Recognition and pose estimation in this system are user independent and robust as we will be using colour tapes on our finger to perform actions. The software can be used as an intuitive input interface to applications that require multi-dimensional control e.g. computer games etc.
Learning to relate images: Mapping units, complex cells and simultaneous eigenspaces
A fundamental operation in many vision tasks, including motion understanding, stereopsis, visual odometry, or invariant recognition, is establishing correspondences between images or between images and data from other modalities. We present an analysis of the role that multiplicative interactions play in learning such correspondences, and we show how learning and inferring relationships between images can be viewed as detecting rotations in the eigenspaces shared among a set of orthogonal matrices. We review a variety of recent multiplicative sparse coding methods in light of this observation. We also review how the squaring operation performed by energy models and by models of complex cells can be thought of as a way to implement multiplicative interactions. This suggests that the main utility of including complex cells in computational models of vision may be that they can encode relations not invariances.
A General Framework of Dual Certificate Analysis for Structured Sparse Recovery Problems
This paper develops a general theoretical framework to analyze structured sparse recovery problems using the notation of dual certificate. Although certain aspects of the dual certificate idea have already been used in some previous work, due to the lack of a general and coherent theory, the analysis has so far only been carried out in limited scopes for specific problems. In this context the current paper makes two contributions. First, we introduce a general definition of dual certificate, which we then use to develop a unified theory of sparse recovery analysis for convex programming. Second, we present a class of structured sparsity regularization called structured Lasso for which calculations can be readily performed under our theoretical framework. This new theory includes many seemingly loosely related previous work as special cases; it also implies new results that improve existing ones even for standard formulations such as L1 regularization.
Spike-and-Slab Sparse Coding for Unsupervised Feature Discovery
Goodfellow, Ian J., Courville, Aaron, Bengio, Yoshua
We consider the problem of using a factor model we call {\em spike-and-slab sparse coding} (S3C) to learn features for a classification task. The S3C model resembles both the spike-and-slab RBM and sparse coding. Since exact inference in this model is intractable, we derive a structured variational inference procedure and employ a variational EM training algorithm. Prior work on approximate inference for this model has not prioritized the ability to exploit parallel architectures and scale to enormous problem sizes. We present an inference procedure appropriate for use with GPUs which allows us to dramatically increase both the training set size and the amount of latent factors. We demonstrate that this approach improves upon the supervised learning capabilities of both sparse coding and the ssRBM on the CIFAR-10 dataset. We evaluate our approach's potential for semi-supervised learning on subsets of CIFAR-10. We demonstrate state-of-the art self-taught learning performance on the STL-10 dataset and use our method to win the NIPS 2011 Workshop on Challenges In Learning Hierarchical Models' Transfer Learning Challenge.
Application of Bayesian Hierarchical Prior Modeling to Sparse Channel Estimation
Pedersen, Niels Lovmand, Manchón, Carles Navarro, Shutin, Dmitriy, Fleury, Bernard Henri
Existing methods for sparse channel estimation typically provide an estimate computed as the solution maximizing an objective function defined as the sum of the log-likelihood function and a penalization term proportional to the l1-norm of the parameter of interest. However, other penalization terms have proven to have strong sparsity-inducing properties. In this work, we design pilot-assisted channel estimators for OFDM wireless receivers within the framework of sparse Bayesian learning by defining hierarchical Bayesian prior models that lead to sparsity-inducing penalization terms. The estimators result as an application of the variational message-passing algorithm on the factor graph representing the signal model extended with the hierarchical prior models. Numerical results demonstrate the superior performance of our channel estimators as compared to traditional and state-of-the-art sparse methods.
Validation of nonlinear PCA
Linear principal component analysis (PCA) can be extended to a nonlinear PCA by using artificial neural networks. But the benefit of curved components requires a careful control of the model complexity. Moreover, standard techniques for model selection, including cross-validation and more generally the use of an independent test set, fail when applied to nonlinear PCA because of its inherent unsupervised characteristics. This paper presents a new approach for validating the complexity of nonlinear PCA models by using the error in missing data estimation as a criterion for model selection. It is motivated by the idea that only the model of optimal complexity is able to predict missing values with the highest accuracy. While standard test set validation usually favours over-fitted nonlinear PCA models, the proposed model validation approach correctly selects the optimal model complexity.