Goto

Collaborating Authors

 Country


Fast Mixing for Discrete Point Processes

arXiv.org Machine Learning

We investigate the systematic mechanism for designing fast mixing Markov chain Monte Carlo algorithms to sample from discrete point processes under the Dobrushin uniqueness condition for Gibbs measures. Discrete point processes are defined as probability distributions $\mu(S)\propto \exp(\beta f(S))$ over all subsets $S\in 2^V$ of a finite set $V$ through a bounded set function $f:2^V\rightarrow \mathbb{R}$ and a parameter $\beta>0$. A subclass of discrete point processes characterized by submodular functions (which include log-submodular distributions, submodular point processes, and determinantal point processes) has recently gained a lot of interest in machine learning and shown to be effective for modeling diversity and coverage. We show that if the set function (not necessarily submodular) displays a natural notion of decay of correlation, then, for $\beta$ small enough, it is possible to design fast mixing Markov chain Monte Carlo methods that yield error bounds on marginal approximations that do not depend on the size of the set $V$. The sufficient conditions that we derive involve a control on the (discrete) Hessian of set functions, a quantity that has not been previously considered in the literature. We specialize our results for submodular functions, and we discuss canonical examples where the Hessian can be easily controlled.


MADE: Masked Autoencoder for Distribution Estimation

arXiv.org Machine Learning

There has been a lot of recent interest in designing neural network models to estimate a distribution from a set of examples. We introduce a simple modification for autoencoder neural networks that yields powerful generative models. Our method masks the autoencoder's parameters to respect autoregressive constraints: each input is reconstructed only from previous inputs in a given ordering. Constrained this way, the autoencoder outputs can be interpreted as a set of conditional probabilities, and their product, the full joint probability. We can also train a single network that can decompose the joint probability in multiple different orderings. Our simple framework can be applied to multiple architectures, including deep ones. Vectorized implementations, such as on GPUs, are simple and fast. Experiments demonstrate that this approach is competitive with state-of-the-art tractable distribution estimators. At test time, the method is significantly faster and scales better than other autoregressive estimators.


BayesPy: Variational Bayesian Inference in Python

arXiv.org Machine Learning

BayesPy is an open-source Python software package for performing variational Bayesian inference. It is based on the variational message passing framework and supports conjugate exponential family models. By removing the tedious task of implementing the variational Bayesian update equations, the user can construct models faster and in a less error-prone way. Simple syntax, flexible model construction and efficient inference make BayesPy suitable for both average and expert Bayesian users. It also supports some advanced methods such as stochastic and collapsed variational inference.


High-dimensional Ordinary Least-squares Projection for Screening Variables

arXiv.org Machine Learning

Variable selection is a challenging issue in statistical applications when the number of predictors $p$ far exceeds the number of observations $n$. In this ultra-high dimensional setting, the sure independence screening (SIS) procedure was introduced to significantly reduce the dimensionality by preserving the true model with overwhelming probability, before a refined second stage analysis. However, the aforementioned sure screening property strongly relies on the assumption that the important variables in the model have large marginal correlations with the response, which rarely holds in reality. To overcome this, we propose a novel and simple screening technique called the high-dimensional ordinary least-squares projection (HOLP). We show that HOLP possesses the sure screening property and gives consistent variable selection without the strong correlation assumption, and has a low computational complexity. A ridge type HOLP procedure is also discussed. Simulation study shows that HOLP performs competitively compared to many other marginal correlation based methods. An application to a mammalian eye disease data illustrates the attractiveness of HOLP.


JUMP-Means: Small-Variance Asymptotics for Markov Jump Processes

arXiv.org Machine Learning

Markov jump processes (MJPs) are used to model a wide range of phenomena from disease progression to RNA path folding. However, maximum likelihood estimation of parametric models leads to degenerate trajectories and inferential performance is poor in nonparametric models. We take a small-variance asymptotics (SVA) approach to overcome these limitations. We derive the small-variance asymptotics for parametric and nonparametric MJPs for both directly observed and hidden state models. In the parametric case we obtain a novel objective function which leads to non-degenerate trajectories. To derive the nonparametric version we introduce the gamma-gamma process, a novel extension to the gamma-exponential process. We propose algorithms for each of these formulations, which we call \emph{JUMP-means}. Our experiments demonstrate that JUMP-means is competitive with or outperforms widely used MJP inference approaches in terms of both speed and reconstruction accuracy.


Local Nonstationarity for Efficient Bayesian Optimization

arXiv.org Machine Learning

Bayesian optimization has shown to be a fundamental global optimization algorithm in many applications: ranging from automatic machine learning, robotics, reinforcement learning, experimental design, simulations, etc. The most popular and effective Bayesian optimization relies on a surrogate model in the form of a Gaussian process due to its flexibility to represent a prior over function. However, many algorithms and setups relies on the stationarity assumption of the Gaussian process. In this paper, we present a novel nonstationary strategy for Bayesian optimization that is able to outperform the state of the art in Bayesian optimization both in stationary and nonstationary problems.


Low-Cost Learning via Active Data Procurement

arXiv.org Machine Learning

We design mechanisms for online procurement of data held by strategic agents for machine learning tasks. The challenge is to use past data to actively price future data and give learning guarantees even when an agent's cost for revealing her data may depend arbitrarily on the data itself. We achieve this goal by showing how to convert a large class of no-regret algorithms into online posted-price and learning mechanisms. Our results in a sense parallel classic sample complexity guarantees, but with the key resource being money rather than quantity of data: With a budget constraint $B$, we give robust risk (predictive error) bounds on the order of $1/\sqrt{B}$. Because we use an active approach, we can often guarantee to do significantly better by leveraging correlations between costs and data. Our algorithms and analysis go through a model of no-regret learning with $T$ arriving pairs (cost, data) and a budget constraint of $B$. Our regret bounds for this model are on the order of $T/\sqrt{B}$ and we give lower bounds on the same order.


Kernel Manifold Alignment

arXiv.org Machine Learning

We introduce a kernel method for manifold alignment (KEMA) and domain adaptation that can match an arbitrary number of data sources without needing corresponding pairs, just few labeled examples in all domains. KEMA has interesting properties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very different complexities, performing a sort of manifold unfolding plus alignment, 3) it can define a domain-specific metric to cope with multimodal specificities, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear feature deformations, and 6) it is closed-form invertible which allows transfer across-domains and data synthesis. We also present a reduced-rank version for computational efficiency and discuss the generalization performance of KEMA under Rademacher principles of stability. KEMA exhibits very good performance over competing methods in synthetic examples, visual object recognition and recognition of facial expressions tasks.


Visual Causal Feature Learning

arXiv.org Machine Learning

We provide a rigorous definition of the visual cause of a behavior that is broadly applicable to the visually driven behavior in humans, animals, neurons, robots and other perceiving systems. Our framework generalizes standard accounts of causal learning to settings in which the causal variables need to be constructed from micro-variables. We prove the Causal Coarsening Theorem, which allows us to gain causal knowledge from observational data with minimal experimental effort. The theorem provides a connection to standard inference techniques in machine learning that identify features of an image that correlate with, but may not cause, the target behavior. Finally, we propose an active learning scheme to learn a manipulator function that performs optimal manipulations on the image to automatically identify the visual cause of a target behavior. We illustrate our inference and learning algorithms in experiments based on both synthetic and real data.


The Preference Learning Toolbox

arXiv.org Machine Learning

Preference learning (PL) is a core area of machine learning that handles datasets with ordinal relations. As the number of generated data of ordinal nature is increasing, the importance and role of the PL field becomes central within machine learning research and practice. This paper introduces an open source, scalable, efficient and accessible preference learning toolbox that supports the key phases of the data training process incorporating various popular data preprocessing, feature selection and preference learning methods.