Goto

Collaborating Authors

 Country


Improving the Performance of maxRPC

arXiv.org Artificial Intelligence

Max Restricted Path Consistency (maxRPC) is a local consistency for binary constraints that can achieve considerably stronger pruning than arc consistency. However, existing maxRRC algorithms suffer from overheads and redundancies as they can repeatedly perform many constraint checks without triggering any value deletions. In this paper we propose techniques that can boost the performance of maxRPC algorithms. These include the combined use of two data structures to avoid many redundant constraint checks, and heuristics for the efficient ordering and execution of certain operations. Based on these, we propose two closely related algorithms. The first one which is a maxRPC algorithm with optimal O(end^3) time complexity, displays good performance when used stand-alone, but is expensive to apply during search. The second one approximates maxRPC and has O(en^2d^4) time complexity, but a restricted version with O(end^4) complexity can be very efficient when used during search. Both algorithms have O(ed) space complexity. Experimental results demonstrate that the resulting methods constantly outperform previous algorithms for maxRPC, often by large margins, and constitute a more than viable alternative to arc consistency on many problems.


Union Support Recovery in Multi-task Learning

arXiv.org Machine Learning

We sharply characterize the performance of different penalization schemes for the problem of selecting the relevant variables in the multi-task setting. Previous work focuses on the regression problem where conditions on the design matrix complicate the analysis. A clearer and simpler picture emerges by studying the Normal means model. This model, often used in the field of statistics, is a simplified model that provides a laboratory for studying complex procedures.


Network Flow Algorithms for Structured Sparsity

arXiv.org Machine Learning

We consider a class of learning problems that involve a structured sparsity-inducing norm defined as the sum of $\ell_\infty$-norms over groups of variables. Whereas a lot of effort has been put in developing fast optimization methods when the groups are disjoint or embedded in a specific hierarchical structure, we address here the case of general overlapping groups. To this end, we show that the corresponding optimization problem is related to network flow optimization. More precisely, the proximal problem associated with the norm we consider is dual to a quadratic min-cost flow problem. We propose an efficient procedure which computes its solution exactly in polynomial time. Our algorithm scales up to millions of variables, and opens up a whole new range of applications for structured sparse models. We present several experiments on image and video data, demonstrating the applicability and scalability of our approach for various problems.


Entropy-Based Search Algorithm for Experimental Design

arXiv.org Machine Learning

The scientific method relies on the iterated processes of inference and inquiry. The inference phase consists of selecting the most probable models based on the available data; whereas the inquiry phase consists of using what is known about the models to select the most relevant experiment. Optimizing inquiry involves searching the parameterized space of experiments to select the experiment that promises, on average, to be maximally informative. In the case where it is important to learn about each of the model parameters, the relevance of an experiment is quantified by Shannon entropy of the distribution of experimental outcomes predicted by a probable set of models. If the set of potential experiments is described by many parameters, we must search this high-dimensional entropy space. Brute force search methods will be slow and computationally expensive. We present an entropy-based search algorithm, called nested entropy sampling, to select the most informative experiment for efficient experimental design. This algorithm is inspired by Skilling's nested sampling algorithm used in inference and borrows the concept of a rising threshold while a set of experiment samples are maintained. We demonstrate that this algorithm not only selects highly relevant experiments, but also is more efficient than brute force search. Such entropic search techniques promise to greatly benefit autonomous experimental design.


Sparse Group Restricted Boltzmann Machines

arXiv.org Machine Learning

Since learning is typically very slow in Boltzmann machines, there is a need to restrict connections within hidden layers. However, the resulting states of hidden units exhibit statistical dependencies. Based on this observation, we propose using $l_1/l_2$ regularization upon the activation possibilities of hidden units in restricted Boltzmann machines to capture the loacal dependencies among hidden units. This regularization not only encourages hidden units of many groups to be inactive given observed data but also makes hidden units within a group compete with each other for modeling observed data. Thus, the $l_1/l_2$ regularization on RBMs yields sparsity at both the group and the hidden unit levels. We call RBMs trained with the regularizer \emph{sparse group} RBMs. The proposed sparse group RBMs are applied to three tasks: modeling patches of natural images, modeling handwritten digits and pretaining a deep networks for a classification task. Furthermore, we illustrate the regularizer can also be applied to deep Boltzmann machines, which lead to sparse group deep Boltzmann machines. When adapted to the MNIST data set, a two-layer sparse group Boltzmann machine achieves an error rate of $0.84\%$, which is, to our knowledge, the best published result on the permutation-invariant version of the MNIST task.


Distributed solving through model splitting

arXiv.org Artificial Intelligence

Constraint problems can be trivially solved in parallel by exploring different branches of the search tree concurrently. Previous approaches have focused on implementing this functionality in the solver, more or less transparently to the user. We propose a new approach, which modifies the constraint model of the problem. An existing model is split into new models with added constraints that partition the search space. Optionally, additional constraints are imposed that rule out the search already done. The advantages of our approach are that it can be implemented easily, computations can be stopped and restarted, moved to different machines and indeed solved on machines which are not able to communicate with each other at all.


Machine learning for constraint solver design -- A case study for the alldifferent constraint

arXiv.org Artificial Intelligence

Constraint solvers are complex pieces of software which require many design decisions to be made by the implementer based on limited information. These decisions affect the performance of the finished solver significantly. Once a design decision has been made, it cannot easily be reversed, although a different decision may be more appropriate for a particular problem. We investigate using machine learning to make these decisions automatically depending on the problem to solve. We use the alldifferent constraint as a case study. Our system is capable of making non-trivial, multi-level decisions that improve over always making a default choice and can be implemented as part of a general-purpose constraint solver.


Learning from Profession Knowledge: Application on Knitting

arXiv.org Artificial Intelligence

Knowledge Management is a global process in companies. It includes all the processes that allow capitalization, sharing and evolution of the Knowledge Capital of the firm, generally recognized as a critical resource of the organization. Several approaches have been defined to capitalize knowledge but few of them study how to learn from this knowledge. We present in this paper an approach that helps to enhance learning from profession knowledge in an organisation. We apply our approach on knitting industry.


Machine Learning Approaches for Modeling Spammer Behavior

arXiv.org Artificial Intelligence

Spam is commonly known as unsolicited or unwanted email messages in the Internet causing potential threat to Internet Security. Users spend a valuable amount of time deleting spam emails. More importantly, ever increasing spam emails occupy server storage space and consume network bandwidth. Keyword-based spam email filtering strategies will eventually be less successful to model spammer behavior as the spammer constantly changes their tricks to circumvent these filters. The evasive tactics that the spammer uses are patterns and these patterns can be modeled to combat spam. This paper investigates the possibilities of modeling spammer behavioral patterns by well-known classification algorithms such as Na\"ive Bayesian classifier (Na\"ive Bayes), Decision Tree Induction (DTI) and Support Vector Machines (SVMs). Preliminary experimental results demonstrate a promising detection rate of around 92%, which is considerably an enhancement of performance compared to similar spammer behavior modeling research.


An Influence Diagram-Based Approach for Estimating Staff Training in Software Industry

arXiv.org Artificial Intelligence

The successful completion of a software development process depends on the analytical capability and foresightedness of the project manager. For the project manager, the main intriguing task is to manage the risk factors as they adversely influence the completion deadline. One such key risk factor is staff training. The risk of this factor can be avoided by pre-judging the amount of training required by the staff. So, a procedure is required to help the project manager make this decision. This paper presents a system that uses influence diagrams to implement the risk model to aid decision making. The system also considers the cost of conducting the training, based on various risk factors such as, (i) Lack of experience with project software; (ii) Newly appointed staff; (iii) Staff not well versed with the required quality standards; and (iv) Lack of experience with project environment. The system provides estimated requirement details for staff training at the beginning of a software development project.