Canberra
How the drone battles of Ukraine are shaping the future of war
Ukraine and Russia are now three years into what has been called the first drone war: not the first in which they were used, but the first in which they have been a major factor on the battlefield. What lessons have others drawn about the shape of future wars? "Drones are here to stay, and they will be everywhere โ on the ground, in the air and at sea โ in numbers," says Oleksandra Molloy at the University of New South Wales in Canberra, Australia. "The point of no return wasโฆ
Effective Predictive Modeling for Emergency Department Visits and Evaluating Exogenous Variables Impact: Using Explainable Meta-learning Gradient Boosting
Neshat, Mehdi, Phipps, Michael, Jha, Nikhil, Khojasteh, Danial, Tong, Michael, Gandomi, Amir
Over an extensive duration, administrators and clinicians have endeavoured to predict Emergency Department (ED) visits with precision, aiming to optimise resource distribution. Despite the proliferation of diverse AI-driven models tailored for precise prognostication, this task persists as a formidable challenge, besieged by constraints such as restrained generalisability, susceptibility to overfitting and underfitting, scalability issues, and complex fine-tuning hyper-parameters. In this study, we introduce a novel Meta-learning Gradient Booster (Meta-ED) approach for precisely forecasting daily ED visits and leveraging a comprehensive dataset of exogenous variables, including socio-demographic characteristics, healthcare service use, chronic diseases, diagnosis, and climate parameters spanning 23 years from Canberra Hospital in ACT, Australia. The proposed Meta-ED consists of four foundational learners-Catboost, Random Forest, Extra Tree, and lightGBoost-alongside a dependable top-level learner, Multi-Layer Perceptron (MLP), by combining the unique capabilities of varied base models (sub-learners). Our study assesses the efficacy of the Meta-ED model through an extensive comparative analysis involving 23 models. The evaluation outcomes reveal a notable superiority of Meta-ED over the other models in accuracy at 85.7% (95% CI ;85.4%, 86.0%) and across a spectrum of 10 evaluation metrics. Notably, when compared with prominent techniques, XGBoost, Random Forest (RF), AdaBoost, LightGBoost, and Extra Tree (ExT), Meta-ED showcases substantial accuracy enhancements of 58.6%, 106.3%, 22.3%, 7.0%, and 15.7%, respectively. Furthermore, incorporating weather-related features demonstrates a 3.25% improvement in the prediction accuracy of visitors' numbers. The encouraging outcomes of our study underscore Meta-ED as a foundation model for the precise prediction of daily ED visitors.
Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses
Baral, Sami, Worden, Eamon, Lim, Wen-Chiang, Luo, Zhuang, Santorelli, Christopher, Gurung, Ashish, Heffernan, Neil
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research has explored methodologies to enhance the effectiveness of feedback. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated feedback systems. This study aims to explore the potential of LLMs in facilitating automated feedback in math education. We examine the effectiveness of LLMs in evaluating student responses by comparing 3 different models: Llama, SBERT-Canberra, and GPT4 model. The evaluation requires the model to provide both a quantitative score and qualitative feedback on the student's responses to open-ended math problems. We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-written feedback for middle-school math problems. A similar approach was taken for training the SBERT model as well, while the GPT4 model used a zero-shot learning approach. We evaluate the model's performance in scoring accuracy and the quality of feedback by utilizing judgments from 2 teachers. The teachers utilized a shared rubric in assessing the accuracy and relevance of the generated feedback. We conduct both quantitative and qualitative analyses of the model performance. By offering a detailed comparison of these methods, this study aims to further the ongoing development of automated feedback systems and outlines potential future directions for leveraging generative LLMs to create more personalized learning experiences.
Graph Coloring via Neural Networks for Haplotype Assembly and Viral Quasispecies Reconstruction and Yu Lin School of Computing, Australian National University, Canberra, Australia
Understanding genetic variation, e.g., through mutations, in organisms is crucial to unravel their effects on the environment and human health. A fundamental characterization can be obtained by solving the haplotype assembly problem, which yields the variation across multiple copies of chromosomes. Variations among fast evolving viruses that lead to different strains (called quasispecies) are also deciphered with similar approaches. In both these cases, high-throughput sequencing technologies that provide oversampled mixtures of large noisy fragments (reads) of genomes, are used to infer constituent components (haplotypes or quasispecies). The problem is harder for polyploid species where there are more than two copies of chromosomes. State-of-the-art neural approaches to solve this NP-hard problem do not adequately model relations among the reads that are important for deconvolving the input signal. We address this problem by developing a new method, called NeurHap, that combines graph representation learning with combinatorial optimization. Our experiments demonstrate substantially better performance of NeurHap in real and synthetic datasets compared to competing approaches.
SymboSLAM: Semantic Map Generation in a Multi-Agent System
Sub-symbolic artificial intelligence methods dominate the fields of environment-type classification and Simultaneous Localisation and Mapping. However, a significant area overlooked within these fields is solution transparency for the human-machine interaction space, as the sub-symbolic methods employed for map generation do not account for the explainability of the solutions generated. This paper proposes a novel approach to environment-type classification through Symbolic Simultaneous Localisation and Mapping, SymboSLAM, to bridge the explainability gap. Our method for environment-type classification observes ontological reasoning used to synthesise the context of an environment through the features found within. We achieve explainability within the model by presenting operators with environment-type classifications overlayed by a semantically labelled occupancy map of landmarks and features. We evaluate SymboSLAM with ground-truth maps of the Canberra region, demonstrating method effectiveness. We assessed the system through both simulations and real-world trials.
New York Times, CNN and Australia's ABC block OpenAI's GPTBot web crawler from accessing content
News outlets including the New York Times, CNN, Reuters and the Australian Broadcasting Corporation (ABC) have blocked a tool from OpenAI, limiting the company's ability to continue accessing their content. OpenAI is behind one of the best known artificial intelligence chatbots, ChatGPT. Its web crawler โ known as GPTBot โ may scan webpages to help improve its AI models. The Verge was first to report the New York Times had blocked GPTBot on its website. The Guardian subsequently found that other major news websites, including CNN, Reuters, the Chicago Tribune, the ABC and Australian Community Media (ACM) brands such as the Canberra Times and the Newcastle Herald, appear to have also disallowed the web crawler.
New York Times, CNN and ABC block OpenAI's GPTBot web crawler from accessing content
News outlets including the New York Times, CNN, Reuters and the Australian Broadcasting Corporation (ABC) have blocked a tool from OpenAI, limiting the company's ability to continue accessing their content. OpenAI is behind one of the best known artificial intelligence chatbots, ChatGPT. Its web crawler โ known as GPTBot โ may scan webpages to help improve its AI models. The Verge was first to report the New York Times had blocked GPTBot on its website. The Guardian subsequently found that other major news websites, including CNN, Reuters, the Chicago Tribune, the ABC and Australian Community Media (ACM) brands such as the Canberra Times and the Newcastle Herald, appear to have also disallowed the web crawler.
Distance Functions and Normalization Under Stream Scenarios
Barboza, Eduardo V. L., de Almeida, Paulo R. Lisboa, Britto, Alceu de Souza Jr, Cruz, Rafael M. O.
Data normalization is an essential task when modeling a classification system. When dealing with data streams, data normalization becomes especially challenging since we may not know in advance the properties of the features, such as their minimum/maximum values, and these properties may change over time. We compare the accuracies generated by eight well-known distance functions in data streams without normalization, normalized considering the statistics of the first batch of data received, and considering the previous batch received. We argue that experimental protocols for streams that consider the full stream as normalized are unrealistic and can lead to biased and poor results. Our results indicate that using the original data stream without applying normalization, and the Canberra distance, can be a good combination when no information about the data stream is known beforehand.
Elder Of Ziyon - Artificial intelligence will supercharge Pallywood and anti-Israel lies
WATCHING Pitch Battle, which chronicled the journey of the Palestine football team to the 2015 Asian Cup in Australia, I was reminded of a meeting I had in Canberra a year ago. It was with a federa... Articles like this are chilling. This isn't exactly "Pallywood," but the concept is the same: Palestians who lie, fabricate and obfuscate to further their cause. The is not, by the way, their own state, but is rather the destruction of Israel.
Towards Mitigating ChatGPT's Negative Impact on Education: Optimizing Question Design through Bloom's Taxonomy
The popularity of generative text AI tools in answering questions has led to concerns regarding their potential negative impact on students' academic performance and the challenges that educators face in evaluating student learning. To address these concerns, this paper introduces an evolutionary approach that aims to identify the best set of Bloom's taxonomy keywords to generate questions that these tools have low confidence in answering. The effectiveness of this approach is evaluated through a case study that uses questions from a Data Structures and Representation course being taught at the University of New South Wales in Canberra, Australia. The results demonstrate that the optimization algorithm is able to find keywords from different cognitive levels to create questions that ChatGPT has low confidence in answering. This study is a step forward to offer valuable insights for educators seeking to create more effective questions that promote critical thinking among students.