North America
Recognizing Evoked Potentials in a Virtual Environment
Bayliss, Jessica D., Ballard, Dana H.
Virtual reality (VR) provides immersive and controllable experimental environments.It expands the bounds of possible evoked potential (EP) experiments by providing complex, dynamic environments in order tostudy cognition without sacrificing environmental control. VR also serves as a safe dynamic testbed for brain-computer .interface
An Oscillatory Correlation Frame work for Computational Auditory Scene Analysis
Brown, Guy J., Wang, DeLiang L.
A neural model is described which uses oscillatory correlation to segregate speech from interfering sound sources. The core of the model is a two-layer neural oscillator network. A sound stream is represented by a synchronized population of oscillators, and different streams are represented by desynchronized oscillator populations. The model has been evaluated using a corpus of speech mixed with interfering sounds, and produces an improvement in signal-to-noise ratio for every mixture. 1 Introduction Speech is seldom heard in isolation: usually, it is mixed with other environmental sounds. Hence, the auditory system must parse the acoustic mixture reaching the ears in order to retrieve a description of each sound source, a process termed auditory scene analysis (ASA) [2] . Conceptually, ASA may be regarded as a two-stage process.
Policy Gradient Methods for Reinforcement Learning with Function Approximation
Sutton, Richard S., McAllester, David A., Singh, Satinder P., Mansour, Yishay
Function approximation is essential to reinforcement learning, but the standard approach of approximating a value function and determining apolicy from it has so far proven theoretically intractable. In this paper we explore an alternative approach in which the policy is explicitly represented by its own function approximator, independent ofthe value function, and is updated according to the gradient of expected reward with respect to the policy parameters. Williams's REINFORCE method and actor-critic methods are examples of this approach. Our main new result is to show that the gradient can be written in a form suitable for estimation from experience aided by an approximate action-value or advantage function. Using this result, we prove for the first time that a version of policy iteration with arbitrary differentiable function approximation is convergent to a locally optimal policy.
Image Recognition in Context: Application to Microscopic Urinalysis
Song, Xubo B., Sill, Joseph, Abu-Mostafa, Yaser S., Kasdan, Harvey
We propose a new and efficient technique for incorporating contextual information into object classification. Most of the current techniques face the problem of exponential computation cost. In this paper, we propose a new general framework that incorporates partial context at a linear cost. This technique is applied to microscopic urinalysis image recognition, resulting in a significant improvement of recognition rate over the context free approach. This gain would have been impossible using conventional context incorporation techniques.
Support Vector Method for Multivariate Density Estimation
Vapnik, Vladimir, Mukherjee, Sayan
A new method for multivariate density estimation is developed based on the Support Vector Method (SVM) solution of inverse ill-posed problems. The solution has the form of a mixture of densities. Thismethod with Gaussian kernels compared favorably to both Parzen's method and the Gaussian Mixture Model method. For synthetic data we achieve more accurate estimates for densities of 2, 6, 12, and 40 dimensions. 1 Introduction The problem of multivariate density estimation is important for many applications, in particular, for speech recognition [1] [7]. When the unknown density belongs to a parametric set satisfying certain conditions one can estimate it using the maximum likelihood (ML) method. Often these conditions are too restrictive. Therefore, nonparametric methods were proposed. The most popular of these, Parzen's method [5], uses the following estimate given data
Wiring Optimization in the Brain
Chklovskii, Dmitri B., Stevens, Charles F.
The complexity of cortical circuits may be characterized by the number of synapses per neuron. We study the dependence of complexity on the fraction of the cortical volume that is made up of "wire" (that is, ofaxons and dendrites), and find that complexity is maximized when wire takes up about 60% of the cortical volume. This prediction is in good agreement withexperimental observations. A consequence of our arguments is that any rearrangement of neurons that takes more wire would sacrifice computational power.
v-Arc: Ensemble Learning in the Presence of Outliers
Rätsch, Gunnar, Schölkopf, Bernhard, Smola, Alex J., Müller, Klaus-Robert, Onoda, Takashi, Mika, Sebastian
The idea of a large minimum margin [17] explains the good generalization performance ofAdaBoost in the low noise regime. However, AdaBoost performs worse on noisy tasks [10, 11], such as the iris and the breast cancer benchmark data sets [1]. On the latter tasks, a large margin on all training points cannot be achieved without adverse effects on the generalization error. This experimental observation was supported by the study of [13] where the generalization error of ensemble methods wasbounded by the sum of the fraction of training points which have a margin smaller than some value p, say, plus a complexity term depending on the base hypotheses andp. While this bound can only capture part of what is going on in practice, it nevertheless already conveys the message that in some cases it pays to allow for some points which have a small margin, or are misclassified, if this leads to a larger overall margin on the remaining points. To cope with this problem, it was mandatory to construct regularized variants of AdaBoost, which traded off the number of margin errors and the size of the margin 562 G.Riitsch, B. Sch6lkopf, A. J. Smola, K.-R.
Low Power Wireless Communication via Reinforcement Learning
This paper examines the application of reinforcement learning to a wireless communicationproblem. The problem requires that channel utility be maximized while simultaneously minimizing battery usage. We present a solution to this multi-criteria problem that is able to significantly reducepower consumption. The solution uses a variable discount factor to capture the effects of battery usage. 1 Introduction Reinforcement learning (RL) has been applied to resource allocation problems in telecommunications, e.g.,channel allocation in wireless systems, network routing, and admission control in telecommunication networks [1,2, 8, 10]. These have demonstrated reinforcement learningcan find good policies that significantly increase the application reward within the dynamics of the telecommunication problems.