North America
Semi-Supervised Classification using Sparse Gaussian Process Regression
Patel, Amrish (Indian Institute of Science) | Sundararajan, S. (Yahoo! Labs) | Shevade, Shirish (Indian Institute of Science)
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Semi-Supervised Classification using Sparse Gaussian Process Regression
Patel, Amrish (Indian Institute of Science) | Sundararajan, S. (Yahoo! Labs) | Shevade, Shirish (Indian Institute of Science)
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Semi-Supervised Classification using Sparse Gaussian Process Regression
Patel, Amrish (Indian Institute of Science) | Sundararajan, S. (Yahoo! Labs) | Shevade, Shirish (Indian Institute of Science)
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Semi-Supervised Classification using Sparse Gaussian Process Regression
Patel, Amrish (Indian Institute of Science) | Sundararajan, S. (Yahoo! Labs) | Shevade, Shirish (Indian Institute of Science)
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Semi-Supervised Classification using Sparse Gaussian Process Regression
Patel, Amrish (Indian Institute of Science) | Sundararajan, S. (Yahoo! Labs) | Shevade, Shirish (Indian Institute of Science)
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Semi-Supervised Classification using Sparse Gaussian Process Regression
Patel, Amrish (Indian Institute of Science) | Sundararajan, S. (Yahoo! Labs) | Shevade, Shirish (Indian Institute of Science)
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Semi-Supervised Classification using Sparse Gaussian Process Regression
Patel, Amrish (Indian Institute of Science) | Sundararajan, S. (Yahoo! Labs) | Shevade, Shirish (Indian Institute of Science)
Gaussian Processes (GPs) are promising Bayesian methods for classification and regression problems. They have also been used for semi-supervised learning tasks. In this paper, we propose a new algorithm for solving semi-supervised binary classification problem using sparse GP regression (GPR) models. It is closely related to semi-supervised learning based on support vector regression (SVR) and maximum margin clustering. The proposed algorithm is simple and easy to implement. It gives a sparse solution directly unlike the SVR based algorithm. Also, the hyperparameters are estimated easily without resorting to expensive cross-validation technique. Use of sparse GPR model helps in making the proposed algorithm scalable. Preliminary results on synthetic and real-world data sets demonstrate the efficacy of the new algorithm.
Markov Logic: An Interface Layer for Artificial Intelligence
Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. This book discusses Markov logic, a powerful language that has been successfully applied as an interface layer. ISBN 9781598296921, 155 pages.
Improving Morphology Induction by Learning Spelling Rules
Naradowsky, Jason (University of Massachusetts Amherst) | Goldwater, Sharon (University of Edinburgh)
Unsupervised learning of morphology is an important task for human learners and in natural language processing systems. Previous systems focus on segmenting words into substrings (taking ⇒ tak.ing), but sometimes a segmentation-only analysis is insufficient (e.g., taking may be more appropriately analyzed as take+ing, with a spelling rule accounting for the deletion of the stem-final e). In this paper, we develop a Bayesian model for simultaneously inducing both morphology and spelling rules. We show that the addition of spelling rules improves performance over the baseline morphology-only model.
A Content-Based Method to Enhance Tag Recommendation
Lu, Yu-Ta (National Taiwan University) | Yu, Shoou-I (National Taiwan University) | Chang, Tsung-Chieh (National Taiwan University) | Hsu, Jane Yung-jen (National Taiwan University)
Tagging has become a primary tool for users to organize and share digital content on many social media sites. In addition, tag information has been shown to enhance capabilities of existing search engines. However, many resources on the web still lack tag information. This paper proposes a content-based approach to tag recommendation which can be applied to webpages with or without prior tag information. While social bookmarking service such as Delicious enables users to share annotated bookmarks, tag recommendation is available only for pages with tags specified by other users. Our proposed approach is motivated by the observation that similar webpages tend to have the same tags. Each webpage can therefore share the tags they own with similar webpages. The propagation of a tag depends on its weight in the originating webpage and the similarity between the sending and receiving webpages. The similarity metric between two webpages is defined as a linear combination of four cosine similarities, taking into account both tag information and page content. Experiments using data crawled from Delicious show that the proposed method is effective in populating untagged webpages with the correct tags.