North America
Exploiting Tractable Substructures in Intractable Networks
Saul, Lawrence K., Jordan, Michael I.
We develop a refined mean field approximation for inference and learning in probabilistic neural networks. Our mean field theory, unlike most, does not assume that the units behave as independent degrees of freedom; instead, it exploits in a principled way the existence of large substructures that are computationally tractable. To illustrate the advantages of this framework, we show how to incorporate weak higher order interactions into a first-order hidden Markov model, treating the corrections (but not the first order structure) within mean field theory. 1 INTRODUCTION Learning the parameters in a probabilistic neural network may be viewed as a problem in statistical estimation.
Improving Elevator Performance Using Reinforcement Learning
Crites, Robert H., Barto, Andrew G.
This paper describes the application of reinforcement learning (RL) to the difficult real world problem of elevator dispatching. The elevator domain poses a combination of challenges not seen in most RL research to date. Elevator systems operate in continuous state spaces and in continuous time as discrete event dynamic systems. Their states are not fully observable and they are nonstationary due to changing passenger arrival rates. In addition, we use a team of RL agents, each of which is responsible for controlling one elevator car.
Finite State Automata that Recurrent Cascade-Correlation Cannot Represent
This paper relates the computational power of Fahlman' s Recurrent Cascade Correlation (RCC) architecture to that of fInite state automata (FSA). While some recurrent networks are FSA equivalent, RCC is not. The paper presents a theoretical analysis of the RCC architecture in the form of a proof describing a large class of FSA which cannot be realized by RCC. 1 INTRODUCTION Recurrent networks can be considered to be defmed by two components: a network architecture, and a learning rule. The former describes how a network with a given set of weights and topology computes its output values, while the latter describes how the weights (and possibly topology) of the network are updated to fIt a specifIc problem. It is possible to evaluate the computational power of a network architecture by analyzing the types of computations a network could perform assuming appropriate connection weights (and topology).
Factorial Hidden Markov Models
Ghahramani, Zoubin, Jordan, Michael I.
Due to the simplicity and efficiency of its parameter estimation algorithm, the hidden Markov model (HMM) has emerged as one of the basic statistical tools for modeling discrete time series, finding widespread application in the areas of speech recognition (Rabiner and Juang, 1986) and computational molecular biology (Baldi et al., 1994). An HMM is essentially a mixture model, encoding information about the history of a time series in the value of a single multinomial variable (the hidden state). This multinomial assumption allows an efficient parameter estimation algorithm to be derived (the Baum-Welch algorithm). However, it also severely limits the representational capacity of HMMs.
Gradient and Hamiltonian Dynamics Applied to Learning in Neural Networks
Howse, James W., Abdallah, Chaouki T., Heileman, Gregory L.
James W. Howse Chaouki T. Abdallah Gregory L. Heileman Department of Electrical and Computer Engineering University of New Mexico Albuquerque, NM 87131 Abstract The process of machine learning can be considered in two stages: model selection and parameter estimation. In this paper a technique is presented for constructing dynamical systems with desired qualitative properties. The approach is based on the fact that an n-dimensional nonlinear dynamical system can be decomposed into one gradient and (n - 1) Hamiltonian systems. Thus, the model selection stage consists of choosing the gradient and Hamiltonian portions appropriately so that a certain behavior is obtainable. To estimate the parameters, a stably convergent learning rule is presented.
Universal Approximation and Learning of Trajectories Using Oscillators
Natural and artificial neural circuits must be capable of traversing specific state space trajectories. A natural approach to this problem is to learn the relevant trajectories from examples. Unfortunately, gradient descent learning of complex trajectories in amorphous networks is unsuccessful. We suggest a possible approach where trajectories are realized by combining simple oscillators, in various modular ways. We contrast two regimes of fast and slow oscillations. In all cases, we show that banks of oscillators with bounded frequencies have universal approximation properties. Open questions are also discussed briefly.
Stable Fitted Reinforcement Learning
We describe the reinforcement learning problem, motivate algorithms which seek an approximation to the Q function, and present new convergence results for two such algorithms. 1 INTRODUCTION AND BACKGROUND Imagine an agent acting in some environment. At time t, the environment is in some state Xt chosen from a finite set of states. The agent perceives Xt, and is allowed to choose an action at from some finite set of actions. Meanwhile, the agent experiences a real-valued cost Ct, chosen from a distribution which also depends only on Xt and at and which has finite mean and variance. Such an environment is called a Markov decision process, or MDP.
Primitive Manipulation Learning with Connectionism
Infants' manipulative exploratory behavior within the environment is a vehicle of cognitive stimulation[McCall 1974]. During this time, infants practice and perfect sensorimotor patterns that become behavioral modules which will be seriated and imbedded in more complex actions. This paper explores the development of such primitive learning systems using an embodied lightweight hand which will be used for a humanoid being developed at the MIT Artificial Intelligence Laboratory[Brooks and Stein 1993]. Primitive grasping procedures are learned from sensory inputs using a connectionist reinforcement algorithm while two submodules preprocess sensory data to recognize the hardness of objects and detect shear using competitive learning and back-propagation algorithm strategies, respectively. This system is not only consistent and quick during the initial learning stage, but also adaptable to new situations after training is completed.