North America
Information Fusion in the Immune System
Twycross, Jamie, Aickelin, Uwe
Biologically-inspired methods such as evolutionary algorithms and neural networks are proving useful in the field of information fusion. Artificial Immune Systems (AISs) are a biologically-inspired approach which take inspiration from the biological immune system. Interestingly, recent research has show how AISs which use multi-level information sources as input data can be used to build effective algorithms for real time computer intrusion detection. This research is based on biological information fusion mechanisms used by the human immune system and as such might be of interest to the information fusion community. The aim of this paper is to present a summary of some of the biological information fusion mechanisms seen in the human immune system, and of how these mechanisms have been implemented as AISs
What does Newcomb's paradox teach us?
Wolpert, David H., Benford, Gregory
In Newcomb's paradox you choose to receive either the contents of a particular closed box, or the contents of both that closed box and another one. Before you choose, a prediction algorithm deduces your choice, and fills the two boxes based on that deduction. Newcomb's paradox is that game theory appears to provide two conflicting recommendations for what choice you should make in this scenario. We analyze Newcomb's paradox using a recent extension of game theory in which the players set conditional probability distributions in a Bayes net. We show that the two game theory recommendations in Newcomb's scenario have different presumptions for what Bayes net relates your choice and the algorithm's prediction. We resolve the paradox by proving that these two Bayes nets are incompatible. We also show that the accuracy of the algorithm's prediction, the focus of much previous work, is irrelevant. In addition we show that Newcomb's scenario only provides a contradiction between game theory's expected utility and dominance principles if one is sloppy in specifying the underlying Bayes net. We also show that Newcomb's paradox is time-reversal invariant; both the paradox and its resolution are unchanged if the algorithm makes its `prediction' after you make your choice rather than before.
Integrating Innate and Adaptive Immunity for Intrusion Detection
Tedesco, Gianni, Twycross, Jamie, Aickelin, Uwe
Network Intrusion Detection Systems (NDIS) monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS's rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alters, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm
Greensmith, Julie, Aickelin, Uwe, Tedesco, Gianni
Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is sucessful at detecting port scans.
Universality, Characteristic Kernels and RKHS Embedding of Measures
Sriperumbudur, Bharath K., Fukumizu, Kenji, Lanckriet, Gert R. G.
A Hilbert space embedding for probability measures has recently been proposed, wherein any probability measure is represented as a mean element in a reproducing kernel Hilbert space (RKHS). Such an embedding has found applications in homogeneity testing, independence testing, dimensionality reduction, etc., with the requirement that the reproducing kernel is characteristic, i.e., the embedding is injective. In this paper, we generalize this embedding to finite signed Borel measures, wherein any finite signed Borel measure is represented as a mean element in an RKHS. We show that the proposed embedding is injective if and only if the kernel is universal. This therefore, provides a novel characterization of universal kernels, which are proposed in the context of achieving the Bayes risk by kernel-based classification/regression algorithms. By exploiting this relation between universality and the embedding of finite signed Borel measures into an RKHS, we establish the relation between universal and characteristic kernels.
Supervised Topic Models
Blei, David M., McAuliffe, Jon D.
We introduce supervised latent Dirichlet allocation (sLDA), a statistical model of labelled documents. The model accommodates a variety of response types. We derive an approximate maximum-likelihood procedure for parameter estimation, which relies on variational methods to handle intractable posterior expectations. Prediction problems motivate this research: we use the fitted model to predict response values for new documents. We test sLDA on two real-world problems: movie ratings predicted from reviews, and the political tone of amendments in the U.S. Senate based on the amendment text. We illustrate the benefits of sLDA versus modern regularized regression, as well as versus an unsupervised LDA analysis followed by a separate regression.
Further Exploration of the Dendritic Cell Algorithm: Antigen Multiplier and Time Windows
Gu, Feng, Greensmith, Julie, Aickelin, Uwe
As an immune-inspired algorithm, the Dendritic Cell Algorithm (DCA), produces promising performances in the field of anomaly detection. This paper presents the application of the DCA to a standard data set, the KDD 99 data set. The results of different implementation versions of the DXA, including the antigen multiplier and moving time windows are reported. The real-valued Negative Selection Algorithm (NSA) using constant-sized detectors and the C4.5 decision tree algorithm are used, to conduct a baseline comparison. The results suggest that the DCA is applicable to KDD 99 data set, and the antigen multiplier and moving time windows have the same effect on the DCA for this particular data set. The real-valued NSA with constant-sized detectors is not applicable to the data set, and the C4.5 decision tree algorithm provides a benchmark of the classification performance for this data set.
Feature Hashing for Large Scale Multitask Learning
Weinberger, Kilian, Dasgupta, Anirban, Attenberg, Josh, Langford, John, Smola, Alex
Empirical evidence suggests that hashing is an effective strategy for dimensionality reduction and practical nonparametric estimation. In this paper we provide exponential tail bounds for feature hashing and show that the interaction between random subspaces is negligible with high probability. We demonstrate the feasibility of this approach with experimental results for a new use case -- multitask learning with hundreds of thousands of tasks.
Security Analysis of Online Centroid Anomaly Detection
Security issues are crucial in a number of machine learning applications, especially in scenarios dealing with human activity rather than natural phenomena (e.g., information ranking, spam detection, malware detection, etc.). It is to be expected in such cases that learning algorithms will have to deal with manipulated data aimed at hampering decision making. Although some previous work addressed the handling of malicious data in the context of supervised learning, very little is known about the behavior of anomaly detection methods in such scenarios. In this contribution we analyze the performance of a particular method -- online centroid anomaly detection -- in the presence of adversarial noise. Our analysis addresses the following security-related issues: formalization of learning and attack processes, derivation of an optimal attack, analysis of its efficiency and constraints. We derive bounds on the effectiveness of a poisoning attack against centroid anomaly under different conditions: bounded and unbounded percentage of traffic, and bounded false positive rate. Our bounds show that whereas a poisoning attack can be effectively staged in the unconstrained case, it can be made arbitrarily difficult (a strict upper bound on the attacker's gain) if external constraints are properly used. Our experimental evaluation carried out on real HTTP and exploit traces confirms the tightness of our theoretical bounds and practicality of our protection mechanisms.
Ptarithmetic
The present article introduces ptarithmetic (short for "polynomial time arithmetic") -- a formal number theory similar to the well known Peano arithmetic, but based on the recently born computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of classical logic. The formulas of ptarithmetic represent interactive computational problems rather than just true/false statements, and their "truth" is understood as existence of a polynomial time solution. The system of ptarithmetic elaborated in this article is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be effectively extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is self-contained, and can be read without any previous familiarity with computability logic.