North America
K-Local Hyperplane and Convex Distance Nearest Neighbor Algorithms
Vincent, Pascal, Bengio, Yoshua
Guided by an initial idea of building a complex (non linear) decision surface with maximal local margin in input space, we give a possible geometrical intuition as to why K-Nearest Neighbor (KNN) algorithms often perform more poorly than SVMs on classification tasks. We then propose modified K-Nearest Neighbor algorithms to overcome the perceived problem. The approach is similar in spirit to Tangent Distance, but with invariances inferred from the local neighborhood rather than prior knowledge. Experimental results on real world classification tasks suggest that the modified KNN algorithms often give a dramatic improvement over standard KNN and perform as well or better than SVMs.
Generating velocity tuning by asymmetric recurrent connections
Xie, Xiaohui, Giese, Martin A.
Asymmetric lateral connections are one possible mechanism that can account for the direction selectivity of cortical neurons. We present a mathematical analysis for a class of these models. Contrasting with earlier theoretical work that has relied on methods from linear systems theory, we study the network's nonlinear dynamic properties that arise when the threshold nonlinearity of the neurons is taken into account. We show that such networks have stimulus-locked traveling pulse solutions that are appropriate for modeling the responses of direction selective cortical neurons. In addition, our analysis shows that outside a certain regime of stimulus speeds the stability of this solutions breaks down giving rise to another class of solutions that are characterized by specific spatiotemporal periodicity. This predicts that if direction selectivity in the cortex is mainly achieved by asymmetric lateral connections lurching activity waves might be observable in ensembles of direction selective cortical neurons within appropriate regimes of the stimulus speed.
Global Coordination of Local Linear Models
Roweis, Sam T., Saul, Lawrence K., Hinton, Geoffrey E.
High dimensional data that lies on or near a low dimensional manifold can be described by a collection of local linear models. Such a description, however, does not provide a global parameterization of the manifold--arguably an important goal of unsupervised learning. In this paper, we show how to learn a collection of local linear models that solves this more difficult problem. Our local linear models are represented by a mixture of factor analyzers, and the "global coordination" of these models is achieved by adding a regularizing term to the standard maximum likelihood objective function. The regularizer breaks a degeneracy in the mixture model's parameter space, favoring models whose internal coordinate systems are aligned in a consistent way. As a result, the internal coordinates change smoothly and continuously as one traverses a connected path on the manifold--even when the path crosses the domains of many different local models. The regularizer takes the form of a Kullback-Leibler divergence and illustrates an unexpected application of variational methods: not to perform approximate inference in intractable probabilistic models, but to learn more useful internal representations in tractable ones.
Very loopy belief propagation for unwrapping phase images
Frey, Brendan J., Koetter, Ralf, Petrovic, Nemanja
Since the discovery that the best error-correcting decoding algorithm can be viewed as belief propagation in a cycle-bound graph, researchers have been trying to determine under what circumstances "loopy belief propagation" is effective for probabilistic inference. Despite several theoretical advances in our understanding of loopy belief propagation, to our knowledge, the only problem that has been solved using loopy belief propagation is error-correcting decoding on Gaussian channels. We propose a new representation for the two-dimensional phase unwrapping problem, and we show that loopy belief propagation produces results that are superior to existing techniques. This is an important result, since many imaging techniques, including magnetic resonance imaging and interferometric synthetic aperture radar, produce phase-wrapped images. Interestingly, the graph that we use has a very large number of very short cycles, supporting evidence that a large minimum cycle length is not needed for excellent results using belief propagation. 1 Introduction Phase unwrapping is an easily stated, fundamental problem in image processing (Ghiglia and Pritt 1998).
Incorporating Invariances in Non-Linear Support Vector Machines
Chapelle, Olivier, Schรถlkopf, Bernhard
The choice of an SVM kernel corresponds to the choice of a representation of the data in a feature space and, to improve performance, it should therefore incorporate prior knowledge such as known transformation invariances. We propose a technique which extends earlier work and aims at incorporating invariances in nonlinear kernels. We show on a digit recognition task that the proposed approach is superior to the Virtual Support Vector method, which previously had been the method of choice. 1 Introduction In some classification tasks, an a priori knowledge is known about the invariances related to the task. For instance, in image classification, we know that the label of a given image should not change after a small translation or rotation.
(Not) Bounding the True Error
We present a new approach to bounding the true error rate of a continuous valued classifier based upon PAC-Bayes bounds. The method first constructs a distribution over classifiers by determining how sensitive each parameter in the model is to noise. The true error rate of the stochastic classifier found with the sensitivity analysis can then be tightly bounded using a PAC-Bayes bound.
Covariance Kernels from Bayesian Generative Models
We propose the framework of mutual information kernels for learning covariance kernels, as used in Support Vector machines and Gaussian process classifiers, from unlabeled task data using Bayesian techniques. We describe an implementation of this framework which uses variational Bayesian mixtures of factor analyzers in order to attack classification problems in high-dimensional spaces where labeled data is sparse, but unlabeled data is abundant.
Tempo tracking and rhythm quantization by sequential Monte Carlo
Cemgil, Ali Taylan, Kappen, Bert
We present a probabilistic generative model for timing deviations in expressive music. The structure of the proposed model is equivalent to a switching state space model. We formulate two well known music recognition problems, namely tempo tracking and automatic transcription (rhythm quantization) as filtering and maximum a posteriori (MAP) state estimation tasks. The inferences are carried out using sequential Monte Carlo integration (particle filtering) techniques. For this purpose, we have derived a novel Viterbi algorithm for Rao-Blackwellized particle filters, where a subset of the hidden variables is integrated out.