Goto

Collaborating Authors

 United States


Learning Mixture Hierarchies

Neural Information Processing Systems

The hierarchical representation of data has various applications in domains such as data mining, machine vision, or information retrieval. In this paper we introduce an extension of the Expectation-Maximization (EM) algorithm that learns mixture hierarchies in a computationally efficient manner. Efficiency is achieved by progressing in a bottom-up fashion, i.e. by clustering the mixture components of a given level in the hierarchy to obtain those of the level above. This cl ustering requires onl y knowledge of the mixture parameters, there being no need to resort to intermediate samples. In addition to practical applications, the algorithm allows a new interpretation of EM that makes clear the relationship with nonparametric kernel-based estimation methods, provides explicit control over the tradeoff between the bias and variance of EM estimates, and offers new insights about the behavior of deterministic annealing methods commonly used with EM to escape local minima of the likelihood.


Scheduling Straight-Line Code Using Reinforcement Learning and Rollouts

Neural Information Processing Systems

In 1986, Tanner and Mead [1] implemented an interesting constraint satisfaction circuit for global motion sensing in a VLSI. We report here a new and improved a VLSI implementation that provides smooth optical flow as well as global motion in a two dimensional visual field. The computation of optical flow is an ill-posed problem, which expresses itself as the aperture problem. However, the optical flow can be estimated by the use of regularization methods, in which additional constraints are introduced in terms of a global energy functional that must be minimized. We show how the algorithmic constraints of Hom and Schunck [2] on computing smooth optical flow can be mapped onto the physical constraints of an equivalent electronic network.


Learning Lie Groups for Invariant Visual Perception

Neural Information Processing Systems

One of the most important problems in visual perception is that of visual invariance: how are objects perceived to be the same despite undergoing transformations such as translations, rotations or scaling? In this paper, we describe a Bayesian method for learning invariances based on Lie group theory. We show that previous approaches based on first-order Taylor series expansions of inputs can be regarded as special cases of the Lie group approach, the latter being capable of handling in principle arbitrarily large transfonnations. Using a matrixexponential based generative model of images, we derive an unsupervised algorithm for learning Lie group operators from input data containing infinitesimal transfonnations.


Perceiving without Learning: From Spirals to Inside/Outside Relations

Neural Information Processing Systems

As a benchmark task, the spiral problem is well known in neural networks. Unlike previous work that emphasizes learning, we approach the problem from a generic perspective that does not involve learning. We point out that the spiral problem is intrinsically connected to the inside/outside problem. A generic solution to both problems is proposed based on oscillatory correlation using a time delay network. Our simulation results are qualitatively consistent with human performance, and we interpret human limitations in terms of synchrony and time delays, both biologically plausible. As a special case, our network without time delays can always distinguish these figures regardless of shape, position, size, and orientation.


Signal Detection in Noisy Weakly-Active Dendrites

Neural Information Processing Systems

Here we derive measures quantifying the information loss of a synaptic signal due to the presence of neuronal noise sources, as it electrotonically propagates along a weakly-active dendrite. We model the dendrite as an infinite linear cable, with noise sources distributed along its length. The noise sources we consider are thermal noise, channel noise arising from the stochastic nature of voltage-dependent ionic channels (K and Na) and synaptic noise due to spontaneous background activity. We assess the efficacy of information transfer using a signal detection paradigm where the objective is to detect the presence/absence of a presynaptic spike from the post-synaptic membrane voltage. This allows us to analytically assess the role of each of these noise sources in information transfer. For our choice of parameters, we find that the synaptic noise is the dominant noise source which limits the maximum length over which information be reliably transmitted. 1 Introduction This is a continuation of our efforts (Manwani and Koch, 1998) to understand the information capacity ofa neuronal link (in terms of the specific nature of neural "hardware") by a systematic study of information processing at different biophysical stages in a model of a single neuron. Here we investigate how the presence of neuronal noise sources influences the information transmission capabilities of a simplified model of a weakly-active dendrite. The noise sources we include are, thermal noise, channel noise arising from the stochastic nature of voltage-dependent channels (K and Na) and synaptic noise due to spontaneous background activity. We characterize the noise sources using analytical expressions of their current power spectral densities and compare their magnitudes for dendritic parameters reported in literature (Mainen and Sejnowski, 1998).


The Bias-Variance Tradeoff and the Randomized GACV

Neural Information Processing Systems

We propose a new in-sample cross validation based method (randomized GACV) for choosing smoothing or bandwidth parameters that govern the bias-variance or fit-complexity tradeoff in'soft' classification. Soft classification refers to a learning procedure which estimates the probability that an example with a given attribute vector is in class 1 vs class O. The target for optimizing the the tradeoff is the Kullback-Liebler distance between the estimated probability distribution and the'true' probability distribution, representing knowledge of an infinite population. The method uses a randomized estimate of the trace of a Hessian and mimics cross validation at the cost of a single relearning with perturbed outcome data.


Improved Switching among Temporally Abstract Actions

Neural Information Processing Systems

In robotics and other control applications it is commonplace to have a preexisting set of controllers for solving subtasks, perhaps handcrafted or previously learned or planned, and still face a difficult problem of how to choose and switch among the controllers to solve an overall task as well as possible. In this paper we present a framework based on Markov decision processes and semi-Markov decision processes for phrasing this problem, a basic theorem regarding the improvement in performance that can be obtained by switching flexibly between given controllers, and example applications of the theorem. In particular, we show how an agent can plan with these high-level controllers and then use the results of such planning to find an even better plan, by modifying the existing controllers, with negligible additional cost and no re-planning. In one of our examples, the complexity of the problem is reduced from 24 billion state-action pairs to less than a million state-controller pairs. In many applications, solutions to parts of a task are known, either because they were handcrafted by people or because they were previously learned or planned. For example, in robotics applications, there may exist controllers for moving joints to positions, picking up objects, controlling eye movements, or navigating along hallways. More generally, an intelligent system may have available to it several temporally extended courses of action to choose from. In such cases, a key challenge is to take full advantage of the existing temporally extended actions, to choose or switch among them effectively, and to plan at their level rather than at the level of individual actions.


Learning Lie Groups for Invariant Visual Perception

Neural Information Processing Systems

One of the most important problems in visual perception is that of visual invariance: how are objects perceived to be the same despite undergoing transformations such as translations, rotations or scaling? In this paper, we describe a Bayesian method for learning invariances based on Lie group theory. We show that previous approaches based on first-order Taylor series expansions of inputs can be regarded as special cases of the Lie group approach, the latter being capable of handling in principle arbitrarily large transfonnations. Using a matrixexponential based generative model of images, we derive an unsupervised algorithm for learning Lie group operators from input data containing infinitesimal transfonnations.


The Bias-Variance Tradeoff and the Randomized GACV

Neural Information Processing Systems

We propose a new in-sample cross validation based method (randomized GACV) for choosing smoothing or bandwidth parameters that govern the bias-variance or fit-complexity tradeoff in'soft' classification. Soft classification refers to a learning procedure which estimates the probability that an example with a given attribute vector is in class 1 vs class O. The target for optimizing the the tradeoff is the Kullback-Liebler distance between the estimated probability distribution and the'true' probability distribution, representing knowledge of an infinite population. The method uses a randomized estimate of the trace of a Hessian and mimics cross validation at the cost of a single relearning with perturbed outcome data.