Goto

Collaborating Authors

 United States


Fast Algorithms for Mining Interesting Frequent Itemsets without Minimum Support

arXiv.org Artificial Intelligence

Real world datasets are sparse, dirty and contain hundreds of items. In such situations, discovering interesting rules (results) using traditional frequent itemset mining approach by specifying a user defined input support threshold is not appropriate. Since without any domain knowledge, setting support threshold small or large can output nothing or a large number of redundant uninteresting results. Recently a novel approach of mining only N-most/Top-K interesting frequent itemsets has been proposed, which discovers the top N interesting results without specifying any user defined support threshold. However, mining interesting frequent itemsets without minimum support threshold are more costly in terms of itemset search space exploration and processing cost. Thereby, the efficiency of their mining highly depends upon three main factors (1) Database representation approach used for itemset frequency counting, (2) Projection of relevant transactions to lower level nodes of search space and (3) Algorithm implementation technique. Therefore, to improve the efficiency of mining process, in this paper we present two novel algorithms called (N-MostMiner and Top-K-Miner) using the bit-vector representation approach which is very efficient in terms of itemset frequency counting and transactions projection. In addition to this, several efficient implementation techniques of N-MostMiner and Top-K-Miner are also present which we experienced in our implementation. Our experimental results on benchmark datasets suggest that the NMostMiner and Top-K-Miner are very efficient in terms of processing time as compared to current best algorithms BOMO and TFP.


Ramp: Fast Frequent Itemset Mining with Efficient Bit-Vector Projection Technique

arXiv.org Artificial Intelligence

Mining frequent itemset using bit-vector representation approach is very efficient for dense type datasets, but highly inefficient for sparse datasets due to lack of any efficient bit-vector projection technique. In this paper we present a novel efficient bit-vector projection technique, for sparse and dense datasets. To check the efficiency of our bit-vector projection technique, we present a new frequent itemset mining algorithm Ramp (Real Algorithm for Mining Patterns) build upon our bit-vector projection technique. The performance of the Ramp is compared with the current best (all, maximal and closed) frequent itemset mining algorithms on benchmark datasets. Different experimental results on sparse and dense datasets show that mining frequent itemset using Ramp is faster than the current best algorithms, which show the effectiveness of our bit-vector projection idea. We also present a new local maximal frequent itemsets propagation and maximal itemset superset checking approach FastLMFI, build upon our PBR bit-vector projection technique. Our different computational experiments suggest that itemset maximality checking using FastLMFI is fast and efficient than a previous will known progressive focusing approach.


FastLMFI: An Efficient Approach for Local Maximal Patterns Propagation and Maximal Patterns Superset Checking

arXiv.org Artificial Intelligence

Maximal frequent patterns superset checking plays an important role in the efficient mining of complete Maximal Frequent Itemsets (MFI) and maximal search space pruning. In this paper we present a new indexing approach, FastLMFI for local maximal frequent patterns (itemset) propagation and maximal patterns superset checking. Experimental results on different sparse and dense datasets show that our work is better than the previous well known progressive focusing technique. We have also integrated our superset checking approach with an existing state of the art maximal itemsets algorithm Mafia, and compare our results with current best maximal itemsets algorithms afopt-max and FP (zhu)-max. Our results outperform afopt-max and FP (zhu)-max on dense (chess and mushroom) datasets on almost all support thresholds, which shows the effectiveness of our approach.


Agent-Based Decision Support System to Prevent and Manage Risk Situations

arXiv.org Artificial Intelligence

The topic of risk prevention and emergency response has become a key social and political concern. One approach to address this challenge is to develop Decision Support Systems (DSS) that can help emergency planners and responders to detect emergencies, as well as to suggest possible course of actions to deal with the emergency. Our research work comes in this framework and aims to develop a DSS that must be generic as much as possible and independent from the case study.


Towards an Intelligent System for Risk Prevention and Management

arXiv.org Artificial Intelligence

Making a decision in a changeable and dynamic environment is an arduous task owing to the lack of information, their uncertainties and the unawareness of planners about the future evolution of incidents. The use of a decision support system is an efficient solution of this issue. Such a system can help emergency planners and responders to detect possible emergencies, as well as to suggest and evaluate possible courses of action to deal with the emergency. We are interested in our work to the modeling of a monitoring preventive and emergency management system, wherein we stress the generic aspect. In this paper we propose an agent-based architecture of this system and we describe a first step of our approach which is the modeling of information and their representation using a multiagent system.


A Methodology for Learning Players' Styles from Game Records

arXiv.org Artificial Intelligence

We describe a preliminary investigation into learning a Chess player's style from game records. The method is based on attempting to learn features of a player's individual evaluation function using the method of temporal differences, with the aid of a conventional Chess engine architecture. Some encouraging results were obtained in learning the styles of two recent Chess world champions, and we report on our attempt to use the learnt styles to discriminate between the players from game records by trying to detect who was playing white and who was playing black. We also discuss some limitations of our approach and propose possible directions for future research. The method we have presented may also be applicable to other strategic games, and may even be generalisable to other domains where sequences of agents' actions are recorded.


Driven by Compression Progress: A Simple Principle Explains Essential Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity, Creativity, Art, Science, Music, Jokes

arXiv.org Artificial Intelligence

I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way, thus making it subjectively simpler and more beautiful. Curiosity is the desire to create or discover more non-random, non-arbitrary, regular data that is novel and surprising not in the traditional sense of Boltzmann and Shannon but in the sense that it allows for compression progress because its regularity was not yet known. This drive maximizes interestingness, the first derivative of subjective beauty or compressibility, that is, the steepness of the learning curve. It motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and (since 1990) artificial systems.


An Investigation Report on Auction Mechanism Design

arXiv.org Artificial Intelligence

Auctions are markets with strict regulations governing the information available to traders in the market and the possible actions they can take. Since well designed auctions achieve desirable economic outcomes, they have been widely used in solving real-world optimization problems, and in structuring stock or futures exchanges. Auctions also provide a very valuable testing-ground for economic theory, and they play an important role in computer-based control systems. Auction mechanism design aims to manipulate the rules of an auction in order to achieve specific goals. Economists traditionally use mathematical methods, mainly game theory, to analyze auctions and design new auction forms. However, due to the high complexity of auctions, the mathematical models are typically simplified to obtain results, and this makes it difficult to apply results derived from such models to market environments in the real world. As a result, researchers are turning to empirical approaches. This report aims to survey the theoretical and empirical approaches to designing auction mechanisms and trading strategies with more weights on empirical ones, and build the foundation for further research in the field.


KiWi: A Scalable Subspace Clustering Algorithm for Gene Expression Analysis

arXiv.org Artificial Intelligence

Subspace clustering has gained increasing popularity in the analysis of gene expression data. Among subspace cluster models, the recently introduced order-preserving sub-matrix (OPSM) has demonstrated high promise. An OPSM, essentially a pattern-based subspace cluster, is a subset of rows and columns in a data matrix for which all the rows induce the same linear ordering of columns. Existing OPSM discovery methods do not scale well to increasingly large expression datasets. In particular, twig clusters having few genes and many experiments incur explosive computational costs and are completely pruned off by existing methods. However, it is of particular interest to determine small groups of genes that are tightly coregulated across many conditions. In this paper, we present KiWi, an OPSM subspace clustering algorithm that is scalable to massive datasets, capable of discovering twig clusters and identifying negative as well as positive correlations. We extensively validate KiWi using relevant biological datasets and show that KiWi correctly assigns redundant probes to the same cluster, groups experiments with common clinical annotations, differentiates real promoter sequences from negative control sequences, and shows good association with cis-regulatory motif predictions.


CP-logic: A Language of Causal Probabilistic Events and Its Relation to Logic Programming

arXiv.org Artificial Intelligence

This papers develops a logical language for representing probabilistic causal laws. Our interest in such a language is twofold. First, it can be motivated as a fundamental study of the representation of causal knowledge. Causality has an inherent dynamic aspect, which has been studied at the semantical level by Shafer in his framework of probability trees. In such a dynamic context, where the evolution of a domain over time is considered, the idea of a causal law as something which guides this evolution is quite natural. In our formalization, a set of probabilistic causal laws can be used to represent a class of probability trees in a concise, flexible and modular way. In this way, our work extends Shafer's by offering a convenient logical representation for his semantical objects. Second, this language also has relevance for the area of probabilistic logic programming. In particular, we prove that the formal semantics of a theory in our language can be equivalently defined as a probability distribution over the well-founded models of certain logic programs, rendering it formally quite similar to existing languages such as ICL or PRISM. Because we can motivate and explain our language in a completely self-contained way as a representation of probabilistic causal laws, this provides a new way of explaining the intuitions behind such probabilistic logic programs: we can say precisely which knowledge such a program expresses, in terms that are equally understandable by a non-logician. Moreover, we also obtain an additional piece of knowledge representation methodology for probabilistic logic programs, by showing how they can express probabilistic causal laws.