Goto

Collaborating Authors

 United States


Unsupervised feature learning for audio classification using convolutional deep belief networks

Neural Information Processing Systems

In recent years, deep learning approaches have gained significant interest as a way of building hierarchical representations from unlabeled data. However, to our knowledge, these deep learning approaches have not been extensively studied for auditory data. In this paper, we apply convolutional deep belief networks to audio data and empirically evaluate them on various audio classification tasks. For the case of speech data, we show that the learned features correspond to phones/phonemes. In addition, our feature representations trained from unlabeled audio data show very good performance for multiple audio classification tasks. We hope that this paper will inspire more research on deep learning approaches applied to a wide range of audio recognition tasks.


Graph-based Consensus Maximization among Multiple Supervised and Unsupervised Models

Neural Information Processing Systems

Little work has been done to directly combine the outputs of multiple supervised and unsupervised models. However, it can increase the accuracy and applicability of ensemble methods. First, we can boost the diversity of classification ensemble by incorporating multiple clustering outputs, each of which provides grouping constraints for the joint label predictions of a set of related objects. Secondly, ensemble of supervised models is limited in applications which have no access to raw data but to the meta-level model outputs. In this paper, we aim at calculating a consolidated classification solution for a set of objects by maximizing the consensus among both supervised predictions and unsupervised grouping constraints. We seek a global optimal label assignment for the target objects, which is different from the result of traditional majority voting and model combination approaches. We cast the problem into an optimization problem on a bipartite graph, where the objective function favors smoothness in the conditional probability estimates over the graph, as well as penalizes deviation from initial labeling of supervised models. We solve the problem through iterative propagation of conditional probability estimates among neighboring nodes, and interpret the method as conducting a constrained embedding in a transformed space, as well as a ranking on the graph. Experimental results on three real applications demonstrate the benefits of the proposed method over existing alternatives.


Large Margin Taxonomy Embedding for Document Categorization

Neural Information Processing Systems

Applications of multi-class classification, such as document categorization, often appear in cost-sensitive settings. Recent work has significantly improved the state of the art by moving beyond ``flat'' classification through incorporation of class hierarchies [Cai and Hoffman 04]. We present a novel algorithm that goes beyond hierarchical classification and estimates the latent semantic space that underlies the class hierarchy. In this space, each class is represented by a prototype and classification is done with the simple nearest neighbor rule. The optimization of the semantic space incorporates large margin constraints that ensure that for each instance the correct class prototype is closer than any other. We show that our optimization is convex and can be solved efficiently for large data sets. Experiments on the OHSUMED medical journal data base yield state-of-the-art results on topic categorization.


Optimal context separation of spiking haptic signals by second-order somatosensory neurons

Neural Information Processing Systems

We study an encoding/decoding mechanism accounting for the relative spike timing of the signals propagating from peripheral nerve fibers to second-order somatosensory neurons in the cuneate nucleus (CN). The CN is modeled as a population of spiking neurons receiving as inputs the spatiotemporal responses of real mechanoreceptors obtained via microneurography recordings in humans. The efficiency of the haptic discrimination process is quantified by a novel definition of entropy that takes into full account the metrical properties of the spike train space. This measure proves to be a suitable decoding scheme for generalizing the classical Shannon entropy to spike-based neural codes. It permits an assessment of neurotransmission in the presence of a large output space (i.e. hundreds of spike trains) with 1 ms temporal precision. It is shown that the CN population code performs a complete discrimination of 81 distinct stimuli already within 35 ms of the first afferent spike, whereas a partial discrimination (80% of the maximum information transmission) is possible as rapidly as 15 ms. This study suggests that the CN may not constitute a mere synaptic relay along the somatosensory pathway but, rather, it may convey optimal contextual accounts (in terms of fast and reliable information transfer) of peripheral tactile inputs to downstream structures of the central nervous system.


Modelling Relational Data using Bayesian Clustered Tensor Factorization

Neural Information Processing Systems

We consider the problem of learning probabilistic models for complex relational structures between various types of objects. A model can help us "understand" a dataset of relational facts in at least two ways, by finding interpretable structure in the data, and by supporting predictions, or inferences about whether particular unobserved relations are likely to be true. Often there is a tradeoff between these two aims: cluster-based models yield more easily interpretable representations, while factorization-based approaches have given better predictive performance on large data sets. We introduce the Bayesian Clustered Tensor Factorization (BCTF) model, which embeds a factorized representation of relations in a nonparametric Bayesian clustering framework. Inference is fully Bayesian but scales well to large data sets. The model simultaneously discovers interpretable clusters and yields predictive performance that matches or beats previous probabilistic models for relational data.


Hierarchical Mixture of Classification Experts Uncovers Interactions between Brain Regions

Neural Information Processing Systems

The human brain can be described as containing a number of functional regions. For a given task, these regions, as well as the connections between them, play a key role in information processing in the brain. However, most existing multi-voxel pattern analysis approaches either treat multiple functional regions as one large uniform region or several independent regions, ignoring the connections between regions. In this paper, we propose to model such connections in an Hidden Conditional Random Field (HCRF) framework, where the classifier of one region of interest (ROI) makes predictions based on not only its voxels but also the classifier predictions from ROIs that it connects to. Furthermore, we propose a structural learning method in the HCRF framework to automatically uncover the connections between ROIs. Experiments on fMRI data acquired while human subjects viewing images of natural scenes show that our model can improve the top-level (the classifier combining information from all ROIs) and ROI-level prediction accuracy, as well as uncover some meaningful connections between ROIs.


Semi-supervised Learning with Weakly-Related Unlabeled Data : Towards Better Text Categorization

Neural Information Processing Systems

The cluster assumption is exploited by most semi-supervised learning (SSL) methods. However, if the unlabeled data is merely weakly related to the target classes, it becomes questionable whether driving the decision boundary to the low density regions of the unlabeled data will help the classification. In such case, the cluster assumption may not be valid; and consequently how to leverage this type of unlabeled data to enhance the classification accuracy becomes a challenge. We introduce Semi-supervised Learning with Weakly-Related Unlabeled Data" (SSLW), an inductive method that builds upon the maximum-margin approach, towards a better usage of weakly-related unlabeled information. Although the SSLW could improve a wide range of classification tasks, in this paper, we focus on text categorization with a small training pool. The key assumption behind this work is that, even with different topics, the word usage patterns across different corpora tends to be consistent. To this end, SSLW estimates the optimal word-correlation matrix that is consistent with both the co-occurrence information derived from the weakly-related unlabeled documents and the labeled documents. For empirical evaluation, we present a direct comparison with a number of state-of-the-art methods for inductive semi-supervised learning and text categorization; and we show that SSLW results in a significant improvement in categorization accuracy, equipped with a small training set and an unlabeled resource that is weakly related to the test beds."


Spectral Clustering with Perturbed Data

Neural Information Processing Systems

Spectral clustering is useful for a wide-ranging set of applications in areas such as biological data analysis, image processing and data mining. However, the computational and/or communication resources required by the method in processing large-scale data sets are often prohibitively high, and practitioners are often required to perturb the original data in various ways (quantization, downsampling, etc) before invoking a spectral algorithm. In this paper, we use stochastic perturbation theory to study the effects of data perturbation on the performance of spectral clustering. We show that the error under perturbation of spectral clustering is closely related to the perturbation of the eigenvectors of the Laplacian matrix. From this result we derive approximate upper bounds on the clustering error. We show that this bound is tight empirically across a wide range of problems, suggesting that it can be used in practical settings to determine the amount of data reduction allowed in order to meet a specification of permitted loss in clustering performance.


Grouping Contours Via a Related Image

Neural Information Processing Systems

Contours have been established in the biological and computer vision literatures as a compact yet descriptive representation of object shape. While individual contours provide structure, they lack the large spatial support of region segments (which lack internal structure). We present a method for further grouping of contours in an image using their relationship to the contours of a second, related image. Stereo, motion, and similarity all provide cues that can aid this task; contours that have similar transformations relating them to their matching contours in the second image likely belong to a single group. To find matches for contours, we rely only on shape, which applies directly to all three modalities without modification, in constrant to the specialized approaches developed for each independently. Visually salient contours are extracted in each image, along with a set of candidate transformations for aligning subsets of them. For each transformation, groups of contours with matching shape across the two images are identified to provide a context for evaluating matches of individual contour points across the images. The resulting contexts of contours are used to perform a final grouping on contours in the original image while simultaneously finding matches in the related image, again by shape matching. We demonstrate grouping results on image pairs consisting of stereo, motion, and similar images. Our method also produces qualitatively better results against a baseline method that does not use the inferred contexts.


Load and Attentional Bayes

Neural Information Processing Systems

Selective attention is a most intensively studied psychological phenomenon, rife with theoretical suggestions and schisms. A critical idea is that of limited capacity, the allocation of which has produced half a century's worth of conflict about such phenomena as early and late selection. An influential resolution of this debate is based on the notion of perceptual load (Lavie, 2005, TICS, 9: 75), which suggests that low-load, easy tasks, because they underuse the total capacity of attention, mandatorily lead to the processing of stimuli that are irrelevant to the current attentional set; whereas high-load, difficult tasks grab all resources for themselves, leaving distractors high and dry. We argue that this theory presents a challenge to Bayesian theories of attention, and suggest an alternative, statistical, account of key supporting data.