Goto

Collaborating Authors

 Metro Vancouver Regional District


SOI: Scaling Down Computational Complexity by Estimating Partial States of the Model

Neural Information Processing Systems

Consumer electronics used to follow the miniaturization trend described by Moore's Law. Despite increased processing power in Microcontroller Units (MCUs), MCUs used in the smallest appliances are still not capable of running even moderately big, state-of-the-art artificial neural networks (ANNs) especially in time-sensitive scenarios. In this work, we present a novel method called Scattered Online Inference (SOI) that aims to reduce the computational complexity of ANNs.


Controlling Multiple Errors Simultaneously with a PAC-Bayes Bound

Neural Information Processing Systems

Current PAC-Bayes generalisation bounds are restricted to scalar metrics of performance, such as the loss or error rate. However, one ideally wants more informationrich certificates that control the entire distribution of possible outcomes, such as the distribution of the test loss in regression, or the probabilities of different mis-classifications. We provide the first PAC-Bayes bound capable of providing such rich information by bounding the Kullback-Leibler divergence between the empirical and true probabilities of a set of M error types, which can either be discretized loss values for regression, or the elements of the confusion matrix (or a partition thereof) for classification. We transform our bound into a differentiable training objective. Our bound is especially useful in cases where the severity of different mis-classifications may change over time; existing PAC-Bayes bounds can only bound a particular pre-decided weighting of the error types. In contrast our bound implicitly controls all uncountably many weightings simultaneously.


FUG: Feature-Universal Graph Contrastive Pre-training for Graphs with Diverse Node Features

Neural Information Processing Systems

Graph Neural Networks (GNNs), known for their effective graph encoding, are extensively used across various fields. Graph self-supervised pre-training, which trains GNN encoders without manual labels to generate high-quality graph representations, has garnered widespread attention. However, due to the inherent complex characteristics in graphs, GNNs encoders pre-trained on one dataset struggle to directly adapt to others that have different node feature shapes.


SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient

Neural Information Processing Systems

Uncertainty estimation in large deep-learning models is a computationally challenging task, where it is difficult to form even a Gaussian approximation to the posterior distribution. In such situations, existing methods usually resort to a diagonal approximation of the covariance matrix despite the fact that these matrices are known to result in poor uncertainty estimates. To address this issue, we propose a new stochastic, low-rank, approximate natural-gradient (SLANG) method for variational inference in large, deep models. Our method estimates a "diagonal plus low-rank" structure based solely on back-propagated gradients of the network log-likelihood. This requires strictly less gradient computations than methods that compute the gradient of the whole variational objective. Empirical evaluations on standard benchmarks confirm that SLANG enables faster and more accurate estimation of uncertainty than mean-field methods, and performs comparably to state-of-the-art methods.


SimplE Embedding for Link Prediction in Knowledge Graphs

Neural Information Processing Systems

Knowledge graphs contain knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs contain only a small subset of what is true in the world. Link prediction approaches aim at predicting new links for a knowledge graph given the existing links among the entities. Tensor factorization approaches have proved promising for such link prediction problems. Proposed in 1927, Canonical Polyadic (CP) decomposition is among the first tensor factorization approaches.



Block Coordinate Plug-and-Play Methods for Blind Inverse Problems

Neural Information Processing Systems

Plug-and-play (PnP) prior is a well-known class of methods for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image denoisers. While PnP methods have been extensively used for image recovery with known measurement operators, there is little work on PnP for solving blind inverse problems. We address this gap by presenting a new block-coordinate PnP (BC-PnP) method that efficiently solves this joint estimation problem by introducing learned denoisers as priors on both the unknown image and the unknown measurement operator. We present a new convergence theory for BC-PnP compatible with blind inverse problems by considering nonconvex data-fidelity terms and expansive denoisers. Our theory analyzes the convergence of BC-PnP to a stationary point of an implicit function associated with an approximate minimum mean-squared error (MMSE) denoiser.


Cross-links Matter for Link Prediction: Rethinking the Debiased GNN from a Data Perspective

Neural Information Processing Systems

Recently, the bias-related issues in GNN-based link prediction have raised widely spread concerns. In this paper, we emphasize the bias on links across different node clusters, which we call cross-links, after considering its significance in both easing information cocoons and preserving graph connectivity. Instead of following the objective-oriented mechanism in prior works with compromised utility, we empirically find that existing GNN models face severe data bias between internallinks (links within the same cluster) and cross-links, and this inspires us to rethink the bias issue on cross-links from a data perspective. Specifically, we design a simple yet effective twin-structure framework, which can be easily applied to most GNNs to mitigate the bias as well as boost their utility in an end-to-end manner. The basic idea is to generate debiased node embeddings as demonstrations and fuse them into the embeddings of original GNNs. In particular, we learn debiased node embeddings with the help of augmented supervision signals, and a novel dynamic training strategy is designed to effectively fuse debiased node embeddings with the original node embeddings. Experiments on three datasets with six common GNNs show that our framework can not only alleviate the bias between internallinks and cross-links but also boost the overall accuracy. Comparisons with other state-of-the-art methods also verify the superiority of our method.


Learning to Parameterize Visual Attributes for Open-set Fine-grained Retrieval

Neural Information Processing Systems

Open-set fine-grained retrieval is an emerging challenging task that allows to retrieve unknown categories beyond the training set. The best solution for handling unknown categories is to represent them using a set of visual attributes learnt from known categories, as widely used in zero-shot learning. Though important, attribute modeling usually requires significant manual annotations and thus is labor-intensive. Therefore, it is worth to investigate how to transform retrieval models trained by image-level supervision from category semantic extraction to attribute modeling. To this end, we propose a novel Visual Attribute Parameterization Network (VAPNet) to learn visual attributes from known categories and parameterize them into the retrieval model, without the involvement of any attribute annotations. In this way, VAPNet could utilize its parameters to parse a set of visual attributes from unknown categories and precisely represent them. Technically, VAPNet explicitly attains some semantics with rich details via making use of local image patches and distills the visual attributes from these discovered semantics. Additionally, it integrates the online refinement of these visual attributes into the training process to iteratively enhance their quality. Simultaneously, VAPNet treats these attributes as supervisory signals to tune the retrieval models, thereby achieving attribute parameterization.


Learning Adversarial Low-rank Markov Decision Processes with Unknown Transition and Full-information Feedback

Neural Information Processing Systems

In this work, we study the low-rank MDPs with adversarially changed losses in the full-information feedback setting. In particular, the unknown transition probability kernel admits a low-rank matrix decomposition [Uehara et al., 2022], and the loss functions may change adversarially but are revealed to the learner at the end of each episode.