Goto

Collaborating Authors

 Edmonton


Macro-FF: Improving AI Planning with Automatically Learned Macro-Operators

Journal of Artificial Intelligence Research

Despite recent progress in AI planning, many benchmarks remain challenging for current planners. In many domains, the performance of a planner can greatly be improved by discovering and exploiting information about the domain structure that is not explicitly encoded in the initial PDDL formulation. In this paper we present and compare two automated methods that learn relevant information from previous experience in a domain and use it to solve new problem instances. Our methods share a common four-step strategy. First, a domain is analyzed and structural information is extracted, then macro-operators are generated based on the previously discovered structure. A filtering and ranking procedure selects the most useful macro-operators. Finally, the selected macros are used to speed up future searches. We have successfully used such an approach in the fourth international planning competition IPC-4. Our system, Macro-FF, extends Hoffmann's state-of-the-art planner FF 2.3 with support for two kinds of macro-operators, and with engineering enhancements. We demonstrate the effectiveness of our ideas on benchmarks from international planning competitions. Our results indicate a large reduction in search effort in those complex domains where structural information can be inferred.


Decentralized Control of Cooperative Systems: Categorization and Complexity Analysis

Journal of Artificial Intelligence Research

The difficulty in solving optimally such problems arises when the agents lack full observability of the global state of the system when they operate. The general problem has been shown to be NEXP-complete. In this paper, we identify classes of decentralized control problems whose complexity ranges between NEXP and P. In particular, we study problems characterized by independent transitions, independent observations, and goal-oriented objective functions. Two algorithms are shown to solve optimally useful classes of goal-oriented decentralized processes in polynomial time. This paper also studies information sharing among the decision-makers, which can improve their performance. We distinguish between three ways in which agents can exchange information: indirect communication, direct communication and sharing state features that are not controlled by the agents. Our analysis shows that for every class of problems we consider, introducing direct or indirect communication does not change the worst-case complexity. The results provide a better understanding of the complexity of decentralized control problems that arise in practice and facilitate the development of planning algorithms for these problems.


The AAAI-2002 Robot Challenge

AI Magazine

The Eighteenth National Conference on Artificial Intelligence (AAAI-2002) Robot Challenge is part of an annual series of robot challenges and competitions. It is intended to promote the development of robot systems that interact intelligently with humans in natural environments. The Challenge task calls for a robot to attend the AAAI conference, which includes registering for the conference and giving a talk about itself. In this article, we review the task requirements, introduce the robots that participated at AAAI-2002 and describe the strengths and weaknesses of their performance.


AAAI 2002 Workshops

AI Magazine

The Association for the Advancement of Artificial Intelligence (AAAI) presented the AAAI-02 Workshop Program on Sunday and Monday, 28-29 July 2002 at the Shaw Convention Center in Edmonton, Alberta, Canada. The AAAI-02 workshop program included 18 workshops covering a wide range of topics in AI. The workshops were Agent-Based Technologies for B2B Electronic-Commerce; Automation as a Caregiver: The Role of Intelligent Technology in Elder Care; Autonomy, Delegation, and Control: From Interagent to Groups; Coalition Formation in Dynamic Multiagent Environments; Cognitive Robotics; Game-Theoretic and Decision-Theoretic Agents; Intelligent Service Integration; Intelligent Situation-Aware Media and Presentations; Meaning Negotiation; Multiagent Modeling and Simulation of Economic Systems; Ontologies and the Semantic Web; Planning with and for Multiagent Systems; Preferences in AI and CP: Symbolic Approaches; Probabilistic Approaches in Search; Real-Time Decision Support and Diagnosis Systems; Semantic Web Meets Language Resources; and Spatial and Temporal Reasoning.



AAAI News

AI Magazine

The AAAI Press - Distributed by The MIT Press Massachusetts Institute of Technology, 5 Cambridge Center, Cambridge, Massachusetts 02142 To order, call toll free: (800) 356-0343 or (617) 625-8569. SPRING 2002 5 first time that AAAI's National conference has been held in Canada--a In addition, the program chairs are experimenting with a new format for AAAI.



Artificial Intelligence in Canada: A Review

AI Magazine

Canadians have made many contributions to artificial intelligence over the years. This article presents a summary of current research in artificial intelligence in Canada and acquaints readers with the Canadian organization for artificial intelligence -- the Canadian Society for the Computational Studies of Intelligence / Societe Canadienne pour l' Etude de l'Intelligence par Ordinateur (CSCSI/ SCEIO).