Goto

Collaborating Authors

 Edmonton


Reducing the Cost of Cycle-Time Tuning for Real-World Policy Optimization

arXiv.org Artificial Intelligence

Continuous-time reinforcement learning tasks commonly use discrete steps of fixed cycle times for actions. As practitioners need to choose the action-cycle time for a given task, a significant concern is whether the hyper-parameters of the learning algorithm need to be re-tuned for each choice of the cycle time, which is prohibitive for real-world robotics. In this work, we investigate the widely-used baseline hyper-parameter values of two policy gradient algorithms -- PPO and SAC -- across different cycle times. Using a benchmark task where the baseline hyper-parameters of both algorithms were shown to work well, we reveal that when a cycle time different than the task default is chosen, PPO with baseline hyper-parameters fails to learn. Moreover, both PPO and SAC with their baseline hyper-parameters perform substantially worse than their tuned values for each cycle time. We propose novel approaches for setting these hyper-parameters based on the cycle time. In our experiments on simulated and real-world robotic tasks, the proposed approaches performed at least as well as the baseline hyper-parameters, with significantly better performance for most choices of the cycle time, and did not result in learning failure for any cycle time. Hyper-parameter tuning still remains a significant barrier for real-world robotics, as our approaches require some initial tuning on a new task, even though it is negligible compared to an extensive tuning for each cycle time. Our approach requires no additional tuning after the cycle time is changed for a given task and is a step toward avoiding extensive and costly hyper-parameter tuning for real-world policy optimization.


Human Fall Detection- Multimodality Approach

arXiv.org Artificial Intelligence

Falls have become more frequent in recent years, which has been harmful for senior citizens.Therefore detecting falls have become important and several data sets and machine learning model have been introduced related to fall detection. In this project report, a human fall detection method is proposed using a multi modality approach. We used the UP-FALL detection data set which is collected by dozens of volunteers using different sensors and two cameras. We use wrist sensor with acclerometer data keeping labels to binary classification, namely fall and no fall from the data set.We used fusion of camera and sensor data to increase performance. The experimental results shows that using only wrist data as compared to multi sensor for binary classification did not impact the model prediction performance for fall detection.


Topological Hidden Markov Models

arXiv.org Machine Learning

The hidden Markov model (HMM) is a classic modeling tool with a wide swath of applications. Its inception considered observations restricted to a finite alphabet, but it was quickly extended to multivariate continuous distributions. In this article, we further extend the HMM from mixtures of normal distributions in $d$-dimensional Euclidean space to general Gaussian measure mixtures in locally convex topological spaces. The main innovation is the use of the Onsager-Machlup functional as a proxy for the probability density function in infinite dimensional spaces. This allows for choice of a Cameron-Martin space suitable for a given application. We demonstrate the versatility of this methodology by applying it to simulated diffusion processes such as Brownian and fractional Brownian sample paths as well as the Ornstein-Uhlenbeck process. Our methodology is applied to the identification of sleep states from overnight polysomnography time series data with the aim of diagnosing Obstructive Sleep Apnea in pediatric patients. It is also applied to a series of annual cumulative snowfall curves from 1940 to 1990 in the city of Edmonton, Alberta.


Pavlovian Signalling with General Value Functions in Agent-Agent Temporal Decision Making

arXiv.org Artificial Intelligence

In this paper, we contribute a multi-faceted study into Pavlovian signalling -- a process by which learned, temporally extended predictions made by one agent inform decision-making by another agent. Signalling is intimately connected to time and timing. In service of generating and receiving signals, humans and other animals are known to represent time, determine time since past events, predict the time until a future stimulus, and both recognize and generate patterns that unfold in time. We investigate how different temporal processes impact coordination and signalling between learning agents by introducing a partially observable decision-making domain we call the Frost Hollow. In this domain, a prediction learning agent and a reinforcement learning agent are coupled into a two-part decision-making system that works to acquire sparse reward while avoiding time-conditional hazards. We evaluate two domain variations: machine agents interacting in a seven-state linear walk, and human-machine interaction in a virtual-reality environment. Our results showcase the speed of learning for Pavlovian signalling, the impact that different temporal representations do (and do not) have on agent-agent coordination, and how temporal aliasing impacts agent-agent and human-agent interactions differently. As a main contribution, we establish Pavlovian signalling as a natural bridge between fixed signalling paradigms and fully adaptive communication learning between two agents. We further show how to computationally build this adaptive signalling process out of a fixed signalling process, characterized by fast continual prediction learning and minimal constraints on the nature of the agent receiving signals. Our results therefore suggest an actionable, constructivist path towards communication learning between reinforcement learning agents.


GPEX, A Framework For Interpreting Artificial Neural Networks

arXiv.org Machine Learning

Abstract--Machine learning researchers have long noted a trade-off between interpretability and prediction performance. On the one hand, traditional models are often interpretable to humans but they cannot achieve high prediction performances. At the opposite end of the spectrum, deep models can achieve state-of-the-art performances in many tasks. However, deep models' predictions are known to be uninterpretable to humans. In this paper we present a framework that shortens the gap between the two aforementioned groups of methods. Given an artificial neural network (ANN), our method finds a Gaussian process (GP) whose predictions almost match those of the ANN. As GPs are highly interpretable, we use the trained GP to explain the ANN's decisions. We use our method to explain ANNs' decisions on may datasets. The explanations provide intriguing insights about the ANNs' decisions. With the best of our knowledge, our inference formulation for GPs is the first one in which an ANN and a similarly behaving Gaussian process naturally appear. Furthermore, we examine some of the known theoretical conditions under which an ANN is interpretable by GPs. Some of those theoretical conditions are too restrictive for modern architectures. However, we hypothesize that only a subset of those theoretical conditions are sufficient. Finally, we implement our framework as a publicly available tool called GPEX. Given any pytorch feed-forward module, GPEX allows users to interpret any ANN subcomponent of the module effortlessly and without having to be involved in the inference algorithm.


RecGURU: Adversarial Learning of Generalized User Representations for Cross-Domain Recommendation

arXiv.org Artificial Intelligence

Cross-domain recommendation can help alleviate the data sparsity issue in traditional sequential recommender systems. In this paper, we propose the RecGURU algorithm framework to generate a Generalized User Representation (GUR) incorporating user information across domains in sequential recommendation, even when there is minimum or no common users in the two domains. We propose a self-attentive autoencoder to derive latent user representations, and a domain discriminator, which aims to predict the origin domain of a generated latent representation. We propose a novel adversarial learning method to train the two modules to unify user embeddings generated from different domains into a single global GUR for each user. The learned GUR captures the overall preferences and characteristics of a user and thus can be used to augment the behavior data and improve recommendations in any single domain in which the user is involved. Extensive experiments have been conducted on two public cross-domain recommendation datasets as well as a large dataset collected from real-world applications. The results demonstrate that RecGURU boosts performance and outperforms various state-of-the-art sequential recommendation and cross-domain recommendation methods. The collected data will be released to facilitate future research.


Variational Auto-Encoder Architectures that Excel at Causal Inference

arXiv.org Artificial Intelligence

Estimating causal effects from observational data (at either an individual -- or a population -- level) is critical for making many types of decisions. One approach to address this task is to learn decomposed representations of the underlying factors of data; this becomes significantly more challenging when there are confounding factors (which influence both the cause and the effect). In this paper, we take a generative approach that builds on the recent advances in Variational Auto-Encoders to simultaneously learn those underlying factors as well as the causal effects. We propose a progressive sequence of models, where each improves over the previous one, culminating in the Hybrid model. Our empirical results demonstrate that the performance of all three proposed models are superior to both state-of-the-art discriminative as well as other generative approaches in the literature.


U.S. Midstream Energy Leader Adopts CIM Machine Learning Solution to Augment Its Pipeline Asset Management System

#artificialintelligence

Edmonton, Alberta, Canada (September 20, 2021) – OneSoft Solutions Inc. (TSX-V:OSS; OTCQB:OSSIF) (the "Company" or "OneSoft") pleased to announce that a large U.S. pipeline operator (the "Client") has entered into a multi-year agreement with OneSoft's wholly owned subsidiary, OneBridge Solutions Inc. ("OneBridge") to integrate Cognitive Integrity ManagementTM ("CIM") software-as-a-service solution into its asset and integrity management practices for its pipeline operations. The Client is a midstream energy leader that transports approximately 30% of natural gas and crude oil in the U.S.A. and has operations in Canada and other countries. Company operations span numerous U.S. states and include facilities for natural gas midstream, intrastate and interstate transportation and storage; crude oil; natural gas liquids and fractionation; refined product transportation; terminal assets; and ownership stakes in other oil and gas operations. The Client currently operates approximately 90,000 miles of pipelines and is actively seeking acquisition of additional energy assets to continue its business growth. The agreement reflects a plan to initially onboard CIM for the Client's piggable pipelines over several years, which currently comprise approximately 45% of its infrastructure, with potential opportunity to subsequently incorporate probabilistic risk, direct assessment and other new CIM functionality enhancements for the majority of its pipeline assets in the future.


Adversarial Random Forest Classifier for Automated Game Design

arXiv.org Artificial Intelligence

Autonomous game design, generating games algorithmically, has been a longtime goal within the technical games research field. However, existing autonomous game design systems have relied in large part on human-authoring for game design knowledge, such as fitness functions in search-based methods. In this paper, we describe an experiment to attempt to learn a human-like fitness function for autonomous game design in an adversarial manner. While our experimental work did not meet our expectations, we present an analysis of our system and results that we hope will be informative to future autonomous game design research.


Toward Co-creative Dungeon Generation via Transfer Learning

arXiv.org Artificial Intelligence

Co-creative Procedural Content Generation via Machine Learning (PCGML) refers to systems where a PCGML agent and a human work together to produce output content. One of the limitations of co-creative PCGML is that it requires co-creative training data for a PCGML agent to learn to interact with humans. However, acquiring this data is a difficult and time-consuming process. In this work, we propose approximating human-AI interaction data and employing transfer learning to adapt learned co-creative knowledge from one game to a different game. We explore this approach for co-creative Zelda dungeon room generation.