Goto

Collaborating Authors

 Malta


Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration

Neural Information Processing Systems

Membership Inference Attacks (MIA) aim to infer whether a target data record has been utilized for model training or not. Existing MIAs designed for large language models (LLMs) can be bifurcated into two types: reference-free and reference-based attacks. Although reference-based attacks appear promising performance by calibrating the probability measured on the target model with reference models, this illusion of privacy risk heavily depends on a reference dataset that closely resembles the training set. Both two types of attacks are predicated on the hypothesis that training records consistently maintain a higher probability of being sampled. However, this hypothesis heavily relies on the overfitting of target models, which will be mitigated by multiple regularization methods and the generalization of LLMs.


Provably Efficient Interaction-Grounded Learning with Personalized Reward

Neural Information Processing Systems

Interaction-Grounded Learning (IGL) [Xie et al., 2021] is a powerful framework in which a learner aims at maximizing unobservable rewards through interacting with an environment and observing reward-dependent feedback on the taken actions. To deal with personalized rewards that are ubiquitous in applications such as recommendation systems, Maghakian et al. [2022] study a version of IGL with context-dependent feedback, but their algorithm does not come with theoretical guarantees. In this work, we consider the same problem and provide the first provably efficient algorithms with sublinear regret under realizability. Our analysis reveals that the step-function estimator of prior work can deviate uncontrollably due to finite-sample effects. Our solution is a novel Lipschitz reward estimator which underestimates the true reward and enjoys favorable generalization performances. Building on this estimator, we propose two algorithms, one based on explore-thenexploit and the other based on inverse-gap weighting. We apply IGL to learning from image feedback and learning from text feedback, which are reward-free settings that arise in practice.


MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs Yingjia Wan 2 Jingyao Li1

Neural Information Processing Systems

Large language models (LLMs) have shown increasing capability in problemsolving and decision-making, largely based on the step-by-step chain-of-thought reasoning processes. However, evaluating these reasoning abilities has become increasingly challenging. Existing outcome-based benchmarks are beginning to saturate, becoming less effective in tracking meaningful progress. To address this, we present a process-based benchmark MR-Ben that demands a meta-reasoning skill, where LMs are asked to locate and analyse potential errors in automatically generated reasoning steps. Our meta-reasoning paradigm is especially suited for system-2 slow thinking, mirroring the human cognitive process of carefully examining assumptions, conditions, calculations, and logic to identify mistakes. MR-Ben comprises 5,975 questions curated by human experts across a wide range of subjects, including physics, chemistry, logic, coding, and more. Through our designed metrics for assessing meta-reasoning on this benchmark, we identify interesting limitations and weaknesses of current LLMs (open-source and closed-source models).


represents the counterfactual value of Y = y

Neural Information Processing Systems

Recent advances in AI have been significantly driven by the capabilities of large language models (LLMs) to solve complex problems in ways that resemble human thinking. However, there is an ongoing debate about the extent to which LLMs are capable of actual reasoning. Central to this debate are two key probabilistic concepts that are essential for connecting causes to their effects: the probability of necessity (PN) and the probability of sufficiency (PS). This paper introduces a framework that is both theoretical and practical, aimed at assessing how effectively LLMs are able to replicate real-world reasoning mechanisms using these probabilistic measures. By viewing LLMs as abstract machines that process information through a natural language interface, we examine the conditions under which it is possible to compute suitable approximations of PN and PS. Our research marks an important step towards gaining a deeper understanding of when LLMs are capable of reasoning, as illustrated by a series of math examples.


FedLLM-Bench: Realistic Benchmarks for Federated Learning of Large Language Models

Neural Information Processing Systems

Federated learning could enable multiple parties to collaboratively fine-tune large language models without directly sharing their data (FedLLM). Following this training paradigm, the community has put massive efforts from diverse aspects including framework, performance, and privacy. However, an unpleasant fact is that there are currently no realistic datasets and benchmarks for FedLLM and previous works often rely on artificially constructed datasets, failing to capture properties in real-world scenarios. Addressing this, we propose FedLLM-Bench, which involves 8 training methods, 4 training datasets, and 6 evaluation metrics, to offer a comprehensive testbed for the FedLLM community. FedLLM-Bench encompasses three datasets (e.g., user-annotated multilingual dataset) for federated instruction tuning and one dataset (e.g., user-annotated preference dataset) for federated preference alignment, whose scale of client number ranges from 38 to 747. Our datasets incorporate several representative diversities: language, quality, quantity, instruction, length, embedding, and preference, capturing properties in real-world scenarios. Based on FedLLM-Bench, we conduct experiments on all datasets to benchmark existing FL methods and provide empirical insights (e.g., multilingual collaboration). We believe that our FedLLM-Bench can benefit the FedLLM community by reducing required efforts, providing a practical testbed, and promoting fair comparisons.


WikiContradict: A Benchmark for Evaluating LLMs on Real-World Knowledge Conflicts from Wikipedia

Neural Information Processing Systems

Retrieval-augmented generation (RAG) has emerged as a promising solution to mitigate the limitations of large language models (LLMs), such as hallucinations and outdated information. However, it remains unclear how LLMs handle knowledge conflicts arising from different augmented retrieved passages, especially when these passages originate from the same source and have equal trustworthiness. In this work, we conduct a comprehensive evaluation of LLM-generated answers to questions that have varying answers based on contradictory passages from Wikipedia, a dataset widely regarded as a high-quality pre-training resource for most LLMs. Specifically, we introduce WikiContradict, a benchmark consisting of 253 highquality, human-annotated instances designed to assess the performance of LLMs in providing a complete perspective on conflicts from the retrieved documents, rather than choosing one answer over another, when augmented with retrieved passages containing real-world knowledge conflicts. We benchmark a diverse range of both closed and open-source LLMs under different QA scenarios, including RAG with a single passage, and RAG with 2 contradictory passages.


SSDM: Scalable Speech Dysfluency Modeling

Neural Information Processing Systems

Speech dysfluency modeling is the core module for spoken language learning, and speech therapy. However, there are three challenges. First, current state-of-the-art solutions [1, 2] suffer from poor scalability. Second, there is a lack of a large-scale dysfluency corpus. Third, there is not an effective learning framework. In this paper, we propose SSDM: Scalable Speech Dysfluency Modeling, which (1) adopts articulatory gestures as scalable forced alignment; (2) introduces connectionist subsequence aligner (CSA) to achieve dysfluency alignment; (3) introduces a largescale simulated dysfluency corpus called Libri-Dys; and (4) develops an end-to-end system by leveraging the power of large language models (LLMs). We expect SSDM to serve as a standard in the area of dysfluency modeling.


DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios Junchao Wu1 Derek F. Wong 1 Shu Yang 1

Neural Information Processing Systems

Detecting text generated by large language models (LLMs) is of great recent interest. With zero-shot methods like DetectGPT, detection capabilities have reached impressive levels. However, the reliability of existing detectors in real-world applications remains underexplored. In this study, we present a new benchmark, DetectRL, highlighting that even state-of-the-art (SOTA) detection techniques still underperformed in this task. We collected human-written datasets from domains where LLMs are particularly prone to misuse. Using popular LLMs, we generated data that better aligns with real-world applications. Unlike previous studies, we employed heuristic rules to create adversarial LLM-generated text, simulating various prompts usages, human revisions like word substitutions, and writing noises like spelling mistakes. Our development of DetectRL reveals the strengths and limitations of current SOTA detectors. More importantly, we analyzed the potential impact of writing styles, model types, attack methods, the text lengths, and real-world human writing factors on different types of detectors.


Perception of Knowledge Boundary for Large Language Models through Semi-open-ended Question Answering

Neural Information Processing Systems

Large Language Models (LLMs) are widely used for knowledge-seeking purposes yet suffer from hallucinations. The knowledge boundary of an LLM limits its factual understanding, beyond which it may begin to hallucinate. Investigating the perception of LLMs' knowledge boundary is crucial for detecting hallucinations and LLMs' reliable generation. Current studies perceive LLMs' knowledge boundary on questions with concrete answers (close-ended questions) while paying limited attention to semi-open-ended questions that correspond to many potential answers. Some researchers achieve it by judging whether the question is answerable or not. However, this paradigm is not so suitable for semi-open-ended questions, which are usually "partially answerable questions" containing both answerable answers and ambiguous (unanswerable) answers.


Instruction Embedding: Latent Representations of Instructions Towards Task Identification

Neural Information Processing Systems

Instruction data is crucial for improving the capability of Large Language Models (LLMs) to align with human-level performance. Recent research LIMA demonstrates that alignment is essentially a process where the model adapts instructions' interaction style or format to solve various tasks, leveraging pre-trained knowledge and skills. Therefore, for instructional data, the most important aspect is the task it represents, rather than the specific semantics and knowledge information. The latent representations of instructions play roles for some instruction-related tasks like data selection and demonstrations retrieval. However, they are always derived from text embeddings, encompass overall semantic information that influences the representation of task categories. In this work, we introduce a new concept, instruction embedding, and construct Instruction Embedding Benchmark (IEB) for its training and evaluation. Then, we propose a baseline Prompt-based Instruction Embedding (PIE) method to make the representations more attention on tasks. The evaluation of PIE, alongside other embedding methods on IEB with two designed tasks, demonstrates its superior performance in accurately identifying task categories.