Goto

Collaborating Authors

 Gottingen


Autoregressive Image Diffusion: Generation of Image Sequence and Application in MRI

Neural Information Processing Systems

Magnetic resonance imaging (MRI) is a widely used non-invasive imaging modality. However, a persistent challenge lies in balancing image quality with imaging speed. This trade-off is primarily constrained by k-space measurements, which traverse specific trajectories in the spatial Fourier domain (k-space). These measurements are often undersampled to shorten acquisition times, resulting in image artifacts and compromised quality. Generative models learn image distributions and can be used to reconstruct high-quality images from undersampled k-space data.



Retrospective for the Dynamic Sensorium Competition for predicting large-scale mouse primary visual cortex activity from videos, Paul G. Fahey *,2-5,, Laura Hansel

Neural Information Processing Systems

Understanding how biological visual systems process information is challenging because of the nonlinear relationship between visual input and neuronal responses. Artificial neural networks allow computational neuroscientists to create predictive models that connect biological and machine vision. Machine learning has benefited tremendously from benchmarks that compare different models on the same task under standardized conditions. However, there was no standardized benchmark to identify state-of-the-art dynamic models of the mouse visual system. To address this gap, we established the SENSORIUM 2023 Benchmark Competition with dynamic input, featuring a new large-scale dataset from the primary visual cortex of ten mice.


Learning to Predict Structural Vibrations

Neural Information Processing Systems

In mechanical structures like airplanes, cars and houses, noise is generated and transmitted through vibrations. To take measures to reduce this noise, vibrations need to be simulated with expensive numerical computations. Deep learning surrogate models present a promising alternative to classical numerical simulations as they can be evaluated magnitudes faster, while trading-off accuracy. To quantify such trade-offs systematically and foster the development of methods, we present a benchmark on the task of predicting the vibration of harmonically excited plates. The benchmark features a total of 12,000 plate geometries with varying forms of beadings, material, boundary conditions, load position and sizes with associated numerical solutions. To address the benchmark task, we propose a new network architecture, named Frequency-Query Operator, which predicts vibration patterns of plate geometries given a specific excitation frequency. Applying principles from operator learning and implicit models for shape encoding, our approach effectively addresses the prediction of highly variable frequency response functions occurring in dynamic systems. To quantify the prediction quality, we introduce a set of evaluation metrics and evaluate the method on our vibrating-plates benchmark. Our method outperforms Deep-ONets, Fourier Neural Operators and more traditional neural network architectures and can be used for design optimization.


Taking the neural sampling code very seriously: A data-driven approach for evaluating generative models of the visual system

Neural Information Processing Systems

Prevailing theories of perception hypothesize that the brain implements perception via Bayesian inference in a generative model of the world. One prominent theory, the Neural Sampling Code (NSC), posits that neuronal responses to a stimulus represent samples from the posterior distribution over latent world state variables that cause the stimulus. Although theoretically elegant, NSC does not specify the exact form of the generative model or prescribe how to link the theory to recorded neuronal activity. Previous works assume simple generative models and test their qualitative agreement with neurophysiological data. Currently, there is no precise alignment of the normative theory with neuronal recordings, especially in response to natural stimuli, and a quantitative, experimental evaluation of models under NSC has been lacking.


Graphical Transformation Models

arXiv.org Machine Learning

Graphical Transformation Models (GTMs) are introduced as a novel approach to effectively model multivariate data with intricate marginals and complex dependency structures non-parametrically, while maintaining interpretability through the identification of varying conditional independencies. GTMs extend multivariate transformation models by replacing the Gaussian copula with a custom-designed multivariate transformation, offering two major advantages. Firstly, GTMs can capture more complex interdependencies using penalized splines, which also provide an efficient regularization scheme. Secondly, we demonstrate how to approximately regularize GTMs using a lasso penalty towards pairwise conditional independencies, akin to Gaussian graphical models. The model's robustness and effectiveness are validated through simulations, showcasing its ability to accurately learn parametric vine copulas and identify conditional independencies. Additionally, the model is applied to a benchmark astrophysics dataset, where the GTM demonstrates favorable performance compared to non-parametric vine copulas in learning complex multivariate distributions.


ReMAP: Neural Model Reprogramming with Network Inversion and Retrieval-Augmented Mapping for Adaptive Motion Forecasting

Neural Information Processing Systems

Mobility impairment caused by limb loss, aging, stroke, and other movement deficiencies is a significant challenge faced by millions of individuals worldwide. Advanced assistive technologies, such as prostheses and orthoses, have the potential to greatly improve the quality of life for such individuals. A critical component in the design of these technologies is the accurate forecasting of reference joint motion for impaired limbs, which is hindered by the scarcity of joint locomotion data available for these patients. To address this, we propose ReMAP, a novel model repurposing strategy that leverages deep learning's reprogramming property, incorporating network inversion principles and retrieval-augmented mapping. Our approach adapts models originally designed for able-bodied individuals to forecast joint motion in limb-impaired patients without altering model parameters. We demonstrate the efficacy of ReMAP through extensive empirical studies on data from below-knee-challenged patients, showcasing significant improvements over traditional transfer learning and fine-tuning methods. These findings have significant implications for advancing assistive technology and mobility for patients with amputations, stroke, or aging.


Hierarchical clustering with maximum density paths and mixture models

arXiv.org Machine Learning

Hierarchical clustering is an effective and interpretable technique for analyzing structure in data, offering a nuanced understanding by revealing insights at multiple scales and resolutions. It is particularly helpful in settings where the exact number of clusters is unknown, and provides a robust framework for exploring complex datasets. Additionally, hierarchical clustering can uncover inner structures within clusters, capturing subtle relationships and nested patterns that may be obscured by traditional flat clustering methods. However, existing hierarchical clustering methods struggle with high-dimensional data, especially when there are no clear density gaps between modes. Our method addresses this limitation by leveraging a two-stage approach, first employing a Gaussian or Student's t mixture model to overcluster the data, and then hierarchically merging clusters based on the induced density landscape. This approach yields state-of-the-art clustering performance while also providing a meaningful hierarchy, making it a valuable tool for exploratory data analysis. Code is available at https://github.com/ecker-lab/tneb clustering.


Reproducibility of predictive networks for mouse visual cortex Max F. Burg, 1-3 Fabian H. Sinz, 1-2

Neural Information Processing Systems

Deep predictive models of neuronal activity have recently enabled several new discoveries about the selectivity and invariance of neurons in the visual cortex. These models learn a shared set of nonlinear basis functions, which are linearly combined via a learned weight vector to represent a neuron's function. Such weight vectors, which can be thought as embeddings of neuronal function, have been proposed to define functional cell types via unsupervised clustering. However, as deep models are usually highly overparameterized, the learning problem is unlikely to have a unique solution, which raises the question if such embeddings can be used in a meaningful way for downstream analysis. In this paper, we investigate how stable neuronal embeddings are with respect to changes in model architecture and initialization.


Artificial Intelligence in Sports: Insights from a Quantitative Survey among Sports Students in Germany about their Perceptions, Expectations, and Concerns regarding the Use of AI Tools

arXiv.org Artificial Intelligence

Generative Artificial Intelligence (AI) tools such as ChatGPT, Copilot, or Gemini have a crucial impact on academic research and teaching. Empirical data on how students perceive the increasing influence of AI, which different types of tools they use, what they expect from them in their daily academic tasks, and their concerns regarding the use of AI in their studies are still limited. The manuscript presents findings from a quantitative survey conducted among sports students of all semesters in Germany using an online questionnaire. It explores aspects such as students' usage behavior, motivational factors, and uncertainties regarding the impact of AI tools on academia in the future. Furthermore, the social climate in sports studies is being investigated to provide a general overview of the current situation of the students in Germany. Data collection took place between August and November 2023, addressing all sports departments at German universities, with a total of 262 students participating. Our Findings indicate that students have a strong interest in using AI tools in their studies, expecting them to improve their overall academic performance, understand the complexity of scientific approaches, and save time. They express confidence that the proliferation of AI will not compromise their critical thinking skills. Moreover, students are positive about integrating more AI-related topics into the curriculum and about lecturers adopting more AI-based teaching methods. However, our findings also show that students have concerns about plagiarism, lecturer preparedness and their own skills and future skill development.