Goto

Collaborating Authors

 Asia


AAAI News

AI Magazine

The AAAI-12 technical Christos Papadimtriou (University of abstracts, and poker competition program will kick off with the opening California, Berkeley) will deliver the posters.


The Best of AI in Japan — Prologue

AI Magazine

This article is the first report in the best of AI in Japan series. This series will focus on the prominent accomplishments made in the AI field, not only the research and development but also the AI-related events in society. As the first in the forthcoming series, this opening article features a historical background and the contemporary AI-research activities in Japan. It then highlights some recent prominent results from the industry. Finally, a future perspective is given.


Extension of Three-Variable Counterfactual Casual Graphic Model: from Two-Value to Three-Value Random Variable

arXiv.org Artificial Intelligence

The extension of counterfactual causal graphic model with three variables of vertex set in directed acyclic graph (DAG) is discussed in this paper by extending two- value distribution to three-value distribution of the variables involved in DAG. Using the conditional independence as ancillary information, 6 kinds of extension counterfactual causal graphic models with some variables are extended from two-value distribution to three-value distribution and the sufficient conditions of identifiability are derived.


A Combinatorial Algebraic Approach for the Identifiability of Low-Rank Matrix Completion

arXiv.org Machine Learning

In this paper, we review the problem of matrix completion and expose its intimate relations with algebraic geometry, combinatorics and graph theory. We present the first necessary and sufficient combinatorial conditions for matrices of arbitrary rank to be identifiable from a set of matrix entries, yielding theoretical constraints and new algorithms for the problem of matrix completion. We conclude by algorithmically evaluating the tightness of the given conditions and algorithms for practically relevant matrix sizes, showing that the algebraic-combinatoric approach can lead to improvements over state-of-the-art matrix completion methods.


On the Partition Function and Random Maximum A-Posteriori Perturbations

arXiv.org Machine Learning

In this paper we relate the partition function to the max-statistics of random variables. In particular, we provide a novel framework for approximating and bounding the partition function using MAP inference on randomly perturbed models. As a result, we can use efficient MAP solvers such as graph-cuts to evaluate the corresponding partition function. We show that our method excels in the typical "high signal - high coupling" regime that results in ragged energy landscapes difficult for alternative approaches.


Policy Gradients with Variance Related Risk Criteria

arXiv.org Machine Learning

Managing risk in dynamic decision problems is of cardinal importance in many fields such as finance and process control. The most common approach to defining risk is through various variance related criteria such as the Sharpe Ratio or the standard deviation adjusted reward. It is known that optimizing many of the variance related risk criteria is NP-hard. In this paper we devise a framework for local policy gradient style algorithms for reinforcement learning for variance related criteria. Our starting point is a new formula for the variance of the cost-to-go in episodic tasks. Using this formula we develop policy gradient algorithms for criteria that involve both the expected cost and the variance of the cost. We prove the convergence of these algorithms to local minima and demonstrate their applicability in a portfolio planning problem.


Learning Markov Network Structure using Brownian Distance Covariance

arXiv.org Machine Learning

In this paper, we present a simple non-parametric method for learning the structure of undirected graphs from data that drawn from an underlying unknown distribution. We propose to use Brownian distance covariance to estimate the conditional independences between the random variables and encodes pairwise Markov graph. This framework can be applied in high-dimensional setting, where the number of parameters much be larger than the sample size.


An Online Boosting Algorithm with Theoretical Justifications

arXiv.org Machine Learning

We study the task of online boosting--combining online weak learners into an online strong learner. While batch boosting has a sound theoretical foundation, online boosting deserves more study from the theoretical perspective. In this paper, we carefully compare the differences between online and batch boosting, and propose a novel and reasonable assumption for the online weak learner. Based on the assumption, we design an online boosting algorithm with a strong theoretical guarantee by adapting from the offline SmoothBoost algorithm that matches the assumption closely. We further tackle the task of deciding the number of weak learners using established theoretical results for online convex programming and predicting with expert advice. Experiments on real-world data sets demonstrate that the proposed algorithm compares favorably with existing online boosting algorithms.


Rethinking Collapsed Variational Bayes Inference for LDA

arXiv.org Machine Learning

We propose a novel interpretation of the collapsed variational Bayes inference with a zero-order Taylor expansion approximation, called CVB0 inference, for latent Dirichlet allocation (LDA). We clarify the properties of the CVB0 inference by using the alpha-divergence. We show that the CVB0 inference is composed of two different divergence projections: alpha=1 and -1. This interpretation will help shed light on CVB0 works.


A Non-Parametric Bayesian Method for Inferring Hidden Causes

arXiv.org Artificial Intelligence

We present a non-parametric Bayesian approach to structure learning with hidden causes. Previous Bayesian treatments of this problem define a prior over the number of hidden causes and use algorithms such as reversible jump Markov chain Monte Carlo to move between solutions. In contrast, we assume that the number of hidden causes is unbounded, but only a finite number influence observable variables. This makes it possible to use a Gibbs sampler to approximate the distribution over causal structures. We evaluate the performance of both approaches in discovering hidden causes in simulated data, and use our non-parametric approach to discover hidden causes in a real medical dataset.