Goto

Collaborating Authors

 Asia


Towards a Self-Organized Agent-Based Simulation Model for Exploration of Human Synaptic Connections

arXiv.org Artificial Intelligence

In this paper, the early design of our self-organized agent-based simulation model for exploration of synaptic connections that faithfully generates what is observed in natural situation is given. While we take inspiration from neuroscience, our intent is not to create a veridical model of processes in neurodevelopmental biology, nor to represent a real biological system. Instead, our goal is to design a simulation model that learns acting in the same way of human nervous system by using findings on human subjects using reflex methodologies in order to estimate unknown connections.


Automated Inference System for End-To-End Diagnosis of Network Performance Issues in Client-Terminal Devices

arXiv.org Artificial Intelligence

Traditional network diagnosis methods of Client-Terminal Device (CTD) problems tend to be laborintensive, time consuming, and contribute to increased customer dissatisfaction. In this paper, we propose an automated solution for rapidly diagnose the root causes of network performance issues in CTD. Based on a new intelligent inference technique, we create the Intelligent Automated Client Diagnostic (IACD) system, which only relies on collection of Transmission Control Protocol (TCP) packet traces. Using soft-margin Support Vector Machine (SVM) classifiers, the system (i) distinguishes link problems from client problems and (ii) identifies characteristics unique to the specific fault to report the root cause. The modular design of the system enables support for new access link and fault types. Experimental evaluation demonstrated the capability of the IACD system to distinguish between faulty and healthy links and to diagnose the client faults with 98% accuracy. The system can perform fault diagnosis independent of the user's specific TCP implementation, enabling diagnosis of diverse range of client devices


Classification of Approaches and Challenges of Frequent Subgraphs Mining in Biological Networks

arXiv.org Artificial Intelligence

Understanding the structure and dynamics of biological networks is one of the important challenges in system biology. In addition, increasing amount of experimental data in biological networks necessitate the use of efficient methods to analyze these huge amounts of data. Such methods require to recognize common patterns to analyze data. As biological networks can be modeled by graphs, the problem of common patterns recognition is equivalent with frequent sub graph mining in a set of graphs. In this paper, at first the challenges of frequent subgrpahs mining in biological networks are introduced and the existing approaches are classified for each challenge. then the algorithms are analyzed on the basis of the type of the approach they apply for each of the challenges.


Biogeography-Based Informative Gene Selection and Cancer Classification Using SVM and Random Forests

arXiv.org Machine Learning

Microarray cancer gene expression data comprise of very high dimensions. Reducing the dimensions helps in improving the overall analysis and classification performance. We propose two hybrid techniques, Biogeography - based Optimization - Random Forests (BBO - RF) and BBO - SVM (Support Vector Machines) with gene ranking as a heuristic, for microarray gene expression analysis. This heuristic is obtained from information gain filter ranking procedure. The BBO algorithm generates a population of candidate subset of genes, as part of an ecosystem of habitats, and employs the migration and mutation processes across multiple generations of the population to improve the classification accuracy. The fitness of each gene subset is assessed by the classifiers - SVM and Random Forests. The performances of these hybrid techniques are evaluated on three cancer gene expression datasets retrieved from the Kent Ridge Biomedical datasets collection and the libSVM data repository. Our results demonstrate that genes selected by the proposed techniques yield classification accuracies comparable to previously reported algorithms.


The Author-Topic Model for Authors and Documents

arXiv.org Machine Learning

We introduce the author-topic model, a generative model for documents that extends Latent Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 2003) to include authorship information. Each author is associated with a multinomial distribution over topics and each topic is associated with a multinomial distribution over words. A document with multiple authors is modeled as a distribution over topics that is a mixture of the distributions associated with the authors. We apply the model to a collection of 1,700 NIPS conference papers and 160,000 CiteSeer abstracts. Exact inference is intractable for these datasets and we use Gibbs sampling to estimate the topic and author distributions. We compare the performance with two other generative models for documents, which are special cases of the author-topic model: LDA (a topic model) and a simple author model in which each author is associated with a distribution over words rather than a distribution over topics. We show topics recovered by the author-topic model, and demonstrate applications to computing similarity between authors and entropy of author output.


"Ideal Parent" Structure Learning for Continuous Variable Networks

arXiv.org Machine Learning

In recent years, there is a growing interest in learning Bayesian networks with continuous variables. Learning the structure of such networks is a computationally expensive procedure, which limits most applications to parameter learning. This problem is even more acute when learning networks with hidden variables. We present a general method for significantly speeding the structure search algorithm for continuous variable networks with common parametric distributions. Importantly, our method facilitates the addition of new hidden variables into the network structure efficiently. We demonstrate the method on several data sets, both for learning structure on fully observable data, and for introducing new hidden variables during structure search.


The Minimum Information Principle for Discriminative Learning

arXiv.org Machine Learning

Exponential models of distributions are widely used in machine learning for classiffication and modelling. It is well known that they can be interpreted as maximum entropy models under empirical expectation constraints. In this work, we argue that for classiffication tasks, mutual information is a more suitable information theoretic measure to be optimized. We show how the principle of minimum mutual information generalizes that of maximum entropy, and provides a comprehensive framework for building discriminative classiffiers. A game theoretic interpretation of our approach is then given, and several generalization bounds provided. We present iterative algorithms for solving the minimum information problem and its convex dual, and demonstrate their performance on various classiffication tasks. The results show that minimum information classiffiers outperform the corresponding maximum entropy models.


Novel Grey Interval Weight Determining and Hybrid Grey Interval Relation Method in Multiple Attribute Decision-Making

arXiv.org Artificial Intelligence

This paper proposes a grey interval relation TOPSIS for the decision making in which all of the attribute weights and attribute values are given by the interval grey numbers. The feature of our method different from other grey relation decision-making is that all of the subjective and objective weights are obtained by interval grey number and that decisionmaking is performed based on the relative approach degree of grey TOPSIS, the relative approach degree of grey incidence and the relative membership degree of grey incidence using 2-dimensional Euclidean distance. The weighted Borda method is used for combining the results of three methods. An example shows the applicability of the proposed approach.


Compact Value-Function Representations for Qualitative Preferences

arXiv.org Artificial Intelligence

We consider the challenge of preference elicitation in systems that help users discover the most desirable item(s) within a given database. Past work on preference elicitation focused on structured models that provide a factored representation of users' preferences. Such models require less information to construct and support efficient reasoning algorithms. This paper makes two substantial contributions to this area: (1) Strong representation theorems for factored value functions. (2) A methodology that utilizes our representation results to address the problem of optimal item selection.


Conceptual Modelling and The Quality of Ontologies: Endurantism Vs. Perdurantism

arXiv.org Artificial Intelligence

Ontologies are key enablers for sharing precise and machine-understandable semantics among different applications and parties. Yet, for ontologies to meet these expectations, their quality must be of a good standard. The quality of an ontology is strongly based on the design method employed. This paper addresses the design problems related to the modelling of ontologies, with specific concentration on the issues related to the quality of the conceptualisations produced. The paper aims to demonstrate the impact of the modelling paradigm adopted on the quality of ontological models and, consequently, the potential impact that such a decision can have in relation to the development of software applications. To this aim, an ontology that is conceptualised based on the Object-Role Modelling (ORM) approach (a representative of endurantism) is re-engineered into a one modelled on the basis of the Object Paradigm (OP) (a representative of perdurantism). Next, the two ontologies are analytically compared using the specified criteria. The conducted comparison highlights that using the OP for ontology conceptualisation can provide more expressive, reusable, objective and temporal ontologies than those conceptualised on the basis of the ORM approach.