Goto

Collaborating Authors

 Asia


Interaction Among Ocularity, Retinotopy and On-center/Off-center Pathways During Development

Neural Information Processing Systems

The development of projections from the retinas to the cortex is mathematically analyzed according to the previously proposed thermodynamic formulation of the self-organization of neural networks. Three types of submodality included in the visual afferent pathways are assumed in two models: model (A), in which the ocularity and retinotopy are considered separately, and model (B), in which on-center/off-center pathways are considered in addition to ocularity and retinotopy. Model (A) shows striped ocular dominance spatial patterns and, in ocular dominance histograms, reveals a dip in the binocular bin. Model (B) displays spatially modulated irregular patterns and shows single-peak behavior in the histograms. When we compare the simulated results with the observed results, it is evident that the ocular dominance spatial patterns and histograms for models (A) and (B) agree very closely with those seen in monkeys and cats.


Evaluation of Adaptive Mixtures of Competing Experts

Neural Information Processing Systems

We compare the performance of the modular architecture, composed of competing expert networks, suggested by Jacobs, Jordan, Nowlan and Hinton (1991) to the performance of a single back-propagation network on a complex, but low-dimensional, vowel recognition task. Simulations reveal that this system is capable of uncovering interesting decompositions in a complex task. The type of decomposition is strongly influenced by the nature of the input to the gating network that decides which expert to use for each case. The modular architecture also exhibits consistently better generalization on many variations of the task.


An Attractor Neural Network Model of Recall and Recognition

Neural Information Processing Systems

This work presents an Attractor Neural Network (ANN) model of Recall and Recognition. It is shown that an ANN model can qualitatively account for a wide range of experimental psychological data pertaining to the these two main aspects of memory access. Certain psychological phenomena are accounted for, including the effects of list-length, wordfrequency, presentation time, context shift, and aging. Thereafter, the probabilities of successful Recall and Recognition are estimated, in order to possibly enable further quantitative examination of the model. 1 Motivation The goal of this paper is to demonstrate that a Hopfield-based [Hop82] ANN model can qualitatively account for a wide range of experimental psychological data pertaining to the two main aspects of memory access, Recall and Recognition. Recall is defined as the ability to retrieve an item from a list of items (words) originally presented during a previous learning phase, given an appropriate cue (cued RecalQ, or spontaneously (free RecalQ. Recognition is defined as the ability to successfully acknowledge that a certain item has or has not appeared in the tutorial list learned before. The main prospects of ANN modeling is that some parameter values, that in former, 'classical' models of memory retrieval (see e.g.



The Knowledge-Based Computer System Development Program of India: A Review

AI Magazine

Each node has between Joshi), and computational vision (S. Papers were presented by The Department of Electronics, Government under contract with Indian companies. Seven major research and KBCS applications, including expert logic programming (which teaching centers and a number of systems for government administration, seems to be well developed in India), associated institutions are involved expert systems for engineering and reasoning. The level of most presentations are the Center for the Development vision system applications, and was good and of an international of Advanced Computing (Pune), the KBCS applications in and for ancient flavor. The audience was Department of Electronics (New Indian sciences; and language-processing unusually active, initiating discussions Delhi), The Indian Institute of Science technologies, including natural and friendly controversies.


Model Based Image Compression and Adaptive Data Representation by Interacting Filter Banks

Neural Information Processing Systems

To achieve high-rate image data compression while maintainig a high quality reconstructed image, a good image model and an efficient way to represent the specific data of each image must be introduced. Based on the physiological knowledge of multi - channel characteristics and inhibitory interactions between them in the human visual system, a mathematically coherent parallel architecture for image data compression which utilizes the Markov random field Image model and interactions between a vast number of filter banks, is proposed.


The Truth, the Whole Truth, and Nothing But the Truth

AI Magazine

Truth maintenance is a collection of techniques for doing belief revision. A truth maintenance system's task is to maintain a set of beliefs in such a way that they are not known to be contradictory and no belief is kept without a reason. Truth maintenance systems were introduced in the late seventies by Jon Doyle and in the last five years there has been an explosion of interest in this kind of systems. In this paper we present an annotated bibliography to the literature of truth maintenance systems, grouping the works referenced according to several classifications.


Learning to Control an Unstable System with Forward Modeling

Neural Information Processing Systems

The forward modeling approach is a methodology for learning control when data is available in distal coordinate systems. We extend previous work by considering how this methodology can be applied to the optimization of quantities that are distal not only in space but also in time. In many learning control problems, the output variables of the controller are not the natural coordinates in which to specify tasks and evaluate performance. Tasks are generally more naturally specified in "distal" coordinate systems (e.g., endpoint coordinates for manipulator motion) than in the "proximal" coordinate system of the controller (e.g., joint angles or torques). Furthermore, the relationship between proximal coordinates and distal coordinates is often not known a priori and, if known, not easily inverted. The forward modeling approach is a methodology for learning control when training data is available in distal coordinate systems. A forward model is a network that learns the transformation from proximal to distal coordinates so that distal specifications can be used in training the controller (Jordan & Rumelhart, 1990). The forward model can often be learned separately from the controller because it depends only on the dynamics of the controlled system and not on the closed-loop dynamics. In previous work, we studied forward models of kinematic transformations (Jordan, 1988, 1990) and state transitions (Jordan & Rumelhart, 1990).


Maximum Likelihood Competitive Learning

Neural Information Processing Systems

One popular class of unsupervised algorithms are competitive algorithms. Inthe traditional view of competition, only one competitor, the winner, adapts for any given case. I propose to view competitive adaptationas attempting to fit a blend of simple probability generators (such as gaussians) to a set of data-points. The maximum likelihoodfit of a model of this type suggests a "softer" form of competition, in which all competitors adapt in proportion to the relative probability that the input came from each competitor. I investigate one application of the soft competitive model, placement ofradial basis function centers for function interpolation, and show that the soft model can give better performance with little additional computational cost. 1 INTRODUCTION Interest in unsupervised learning has increased recently due to the application of more sophisticated mathematical tools (Linsker, 1988; Plumbley and Fallside, 1988; Sanger, 1989) and the success of several elegant simulations of large scale selforganization (Linsker,1986; Kohonen, 1982). One popular class of unsupervised algorithms are competitive algorithms, which have appeared as components in a variety of systems (Von der Malsburg, 1973; Fukushima, 1975; Grossberg, 1978). Generalizing the definition of Rumelhart and Zipser (1986), a competitive adaptive system consists of a collection of modules which are structurally identical except, possibly, for random initial parameter variation.


A Large-Scale Neural Network Which Recognizes Handwritten Kanji Characters

Neural Information Processing Systems

We propose a new way to construct a large-scale neural network for 3.000 handwritten Kanji characters recognition. This neural network consists of 3 parts: a collection of small-scale networks which are trained individually on a small number of Kanji characters; a network which integrates the output from the small-scale networks, and a process to facilitate the integration of these neworks. The recognition rate of the total system is comparable with those of the small-scale networks. Our results indicate that the proposed method is effective for constructing a large-scale network without loss of recognition performance.