Goto

Collaborating Authors

 Jiangsu Province


Optimistic Critic Reconstruction and Constrained Fine-Tuning for General Offline-to-Online RL Qin-Wen Luo, Ye-Wen Wang 1, Sheng-Jun Huang

Neural Information Processing Systems

Offline-to-online (O2O) reinforcement learning (RL) provides an effective means of leveraging an offline pre-trained policy as initialization to improve performance rapidly with limited online interactions. Recent studies often design fine-tuning strategies for a specific offline RL method and cannot perform general O2O learning from any offline method. To deal with this problem, we disclose that there are evaluation and improvement mismatches between the offline dataset and the online environment, which hinders the direct application of pre-trained policies to online fine-tuning. In this paper, we propose to handle these two mismatches simultaneously, which aims to achieve general O2O learning from any offline method to any online method. Before online fine-tuning, we re-evaluate the pessimistic critic trained on the offline dataset in an optimistic way and then calibrate the misaligned critic with the reliable offline actor to avoid erroneous update. After obtaining an optimistic and and aligned critic, we perform constrained fine-tuning to combat distribution shift during online learning. We show empirically that the proposed method can achieve stable and efficient performance improvement on multiple simulated tasks when compared to the state-of-the-art methods.


A Motion-aware Spatio-temporal Graph for Video Salient Object Ranking Hao Chen 1,2, and Yongjian Deng School of Computer Science and Engineering, Southeast University, Nanjing, China

Neural Information Processing Systems

Video salient object ranking aims to simulate the human attention mechanism by dynamically prioritizing the visual attraction of objects in a scene over time. Despite its numerous practical applications, this area remains underexplored. In this work, we propose a graph model for video salient object ranking. This graph simultaneously explores multi-scale spatial contrasts and intra-/inter-instance temporal correlations across frames to extract diverse spatio-temporal saliency cues. It has two advantages: 1. Unlike previous methods that only perform global inter-frame contrast or compare all proposals across frames globally, we explicitly model the motion of each instance by comparing its features with those in the same spatial region in adjacent frames, thus obtaining more accurate motion saliency cues.



Continuous Heatmap Regression for Pose Estimation via Implicit Neural Representation

Neural Information Processing Systems

Heatmap regression has dominated human pose estimation due to its superior performance and strong generalization. To meet the requirements of traditional explicit neural networks for output form, existing heatmap-based methods discretize the originally continuous heatmap representation into 2D pixel arrays, which leads to performance degradation due to the introduction of quantization errors. This problem is significantly exacerbated as the size of the input image decreases, which makes heatmap-based methods not much better than coordinate regression on low-resolution images. In this paper, we propose a novel neural representation for human pose estimation called NerPE to achieve continuous heatmap regression. Given any position within the image range, NerPE regresses the corresponding confidence scores for body joints according to the surrounding image features, which guarantees continuity in space and confidence during training. Thanks to the decoupling from spatial resolution, NerPE can output the predicted heatmaps at arbitrary resolution during inference without retraining, which easily achieves sub-pixel localization precision. To reduce the computational cost, we design progressive coordinate decoding to cooperate with continuous heatmap regression, in which localization no longer requires the complete generation of high-resolution heatmaps.


ControlSynth Neural ODEs: Modeling Dynamical Systems with Guaranteed Convergence

Neural Information Processing Systems

Neural ODEs (NODEs) are continuous-time neural networks (NNs) that can process data without the limitation of time intervals. They have advantages in learning and understanding the evolution of complex real dynamics. Many previous works have focused on NODEs in concise forms, while numerous physical systems taking straightforward forms, in fact, belong to their more complex quasi-classes, thus appealing to a class of general NODEs with high scalability and flexibility to model those systems. This, however, may result in intricate nonlinear properties. In this paper, we introduce ControlSynth Neural ODEs (CSODEs). We show that despite their highly nonlinear nature, convergence can be guaranteed via tractable linear inequalities. In the composition of CSODEs, we introduce an extra control term for learning the potential simultaneous capture of dynamics at different scales, which could be particularly useful for partial differential equation-formulated systems. Finally, we compare several representative NNs with CSODEs on important physical dynamics under the inductive biases of CSODEs, and illustrate that CSODEs have better learning and predictive abilities in these settings.


Incomplete Multimodality-Diffused Emotion Recognition

Neural Information Processing Systems

Human multimodal emotion recognition (MER) aims to perceive and understand human emotions via various heterogeneous modalities, such as language, vision, and acoustic. Compared with unimodality, the complementary information in the multimodalities facilitates robust emotion understanding. Nevertheless, in real-world scenarios, the missing modalities hinder multimodal understanding and result in degraded MER performance. In this paper, we propose an Incomplete Multimodality-Diffused emotion recognition (IMDer) method to mitigate the challenge of MER under incomplete multimodalities. To recover the missing modalities, IMDer exploits the score-based diffusion model that maps the input Gaussian noise into the desired distribution space of the missing modalities and recovers missing data abided by their original distributions.


Adaptive Variance Reduction for Stochastic Optimization under Weaker Assumptions Wei Jiang 1

Neural Information Processing Systems

This paper explores adaptive variance reduction methods for stochastic optimization based on the STORM technique. Existing adaptive extensions of STORM rely on strong assumptions like bounded gradients and bounded function values, or suffer an additional O(log T) term in the convergence rate.




MMM-RS: A Multi-modal, Multi-GSD, Multi-scene Remote Sensing Dataset and Benchmark for Text-to-Image Generation

Neural Information Processing Systems

Recently, the diffusion-based generative paradigm has achieved impressive general image generation capabilities with text prompts due to its accurate distribution modeling and stable training process. However, generating diverse remote sensing (RS) images that are tremendously different from general images in terms of scale and perspective remains a formidable challenge due to the lack of a comprehensive remote sensing image generation dataset with various modalities, ground sample distances (GSD), and scenes. In this paper, we propose a Multi-modal, Multi-GSD, Multi-scene Remote Sensing (MMM-RS) dataset and benchmark for textto-image generation in diverse remote sensing scenarios. Specifically, we first collect nine publicly available RS datasets and conduct standardization for all samples. To bridge RS images to textual semantic information, we utilize a largescale pretrained vision-language model to automatically output text prompts and perform hand-crafted rectification, resulting in information-rich text-image pairs (including multi-modal images). In particular, we design some methods to obtain the images with different GSD and various environments (e.g., low-light, foggy) in a single sample. With extensive manual screening and refining annotations, we ultimately obtain a MMM-RS dataset that comprises approximately 2.1 million text-image pairs. Extensive experimental results verify that our proposed MMM-RS dataset allows off-the-shelf diffusion models to generate diverse RS images across various modalities, scenes, weather conditions, and GSD. The dataset is available at https://github.com/ljl5261/MMM-RS.