lugeon


Rock mechanics modeling based on soft granulation theory

arXiv.org Artificial Intelligence

This paper describes application of information granulation theory, on the design of rock engineering flowcharts. Firstly, an overall flowchart, based on information granulation theory has been highlighted. Information granulation theory, in crisp (non-fuzzy) or fuzzy format, can take into account engineering experiences (especially in fuzzy shape-incomplete information or superfluous), or engineering judgments, in each step of designing procedure, while the suitable instruments modeling are employed. In this manner and to extension of soft modeling instruments, using three combinations of Self Organizing Map (SOM), Neuro-Fuzzy Inference System (NFIS), and Rough Set Theory (RST) crisp and fuzzy granules, from monitored data sets are obtained. The main underlined core of our algorithms are balancing of crisp(rough or non-fuzzy) granules and sub fuzzy granules, within non fuzzy information (initial granulation) upon the open-close iterations. Using different criteria on balancing best granules (information pockets), are obtained. Validations of our proposed methods, on the data set of in-situ permeability in rock masses in Shivashan dam, Iran have been highlighted.


Permeability Analysis based on information granulation theory

arXiv.org Artificial Intelligence

This paper describes application of information granulation theory, on the analysis of "lugeon data". In this manner, using a combining of Self Organizing Map (SOM) and Neuro-Fuzzy Inference System (NFIS), crisp and fuzzy granules are obtained. Balancing of crisp granules and sub- fuzzy granules, within non fuzzy information (initial granulation), is rendered in open-close iteration. Using two criteria, "simplicity of rules "and "suitable adaptive threshold error level", stability of algorithm is guaranteed. In other part of paper, rough set theory (RST), to approximate analysis, has been employed >.Validation of the proposed methods, on the large data set of in-situ permeability in rock masses, in the Shivashan dam, Iran, has been highlighted. By the implementation of the proposed algorithm on the lugeon data set, was proved the suggested method, relating the approximate analysis on the permeability, could be applied.


Graphical Estimation of Permeability Using RST&NFIS

arXiv.org Artificial Intelligence

This paper pursues some applications of Rough Set Theory (RST) and neural-fuzzy model to analysis of "lugeon data". In the manner, using Self Organizing Map (SOM) as a pre-processing the data are scaled and then the dominant rules by RST, are elicited. Based on these rules variations of permeability in the different levels of Shivashan dam, Iran has been highlighted. Then, via using a combining of SOM and an adaptive Neuro-Fuzzy Inference System (NFIS) another analysis on the data was carried out. Finally, a brief comparison between the obtained results of RST and SOM-NFIS (briefly SONFIS) has been rendered.