cubist model


Balancing Interpretability and Predictive Power with Cubist Models in R

#artificialintelligence

Machine learning models are powerful tools that do well in their purpose of prediction. In many business applications, the power of these models is quite beneficial. With any application of a machine learning model, the process to choosing which model involves determining the model that performs best across a given set of criteria. One of these criteria is the interpretability of the model. Neural nets to decision trees, to regression models all have varying levels of interpretability.