Those amazing flying machines


Verity's drone is part of a larger performance system called "Stage Flyers." One of the most successful showings was Chicago-based Corvus Robotics, a software company that uses indoor aerial drones to scan inventory (similar to the Walmart example above). According to Dynamo's managing directors, Corvus is building enabling tools that allow operators to fly drones autonomously, scan & sync barcodes, and enter the SKU data into the existing warehouse management system. Corvus may be the latest indoor drone startup to enter an already crowded warehouse market, which includes established players like the Hardis Group, Smartx, and DJI.



Researchers from MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) and Columbia University are trying to make the process faster and easier: In a new paper, they've developed InstantCAD, a tool that lets designers interactively edit, improve, and optimize CAD models using a more streamlined and intuitive workflow. Traditional CAD systems are "parametric," which means that when engineers design models, they can change properties like shape and size ("parameters") based on different priorities. Matusik says InstantCAD could be particularly helpful for more intricate designs for objects like cars, planes, and robots, particularly for industries like car manufacturing that care a lot about squeezing every little bit of performance out of a product. "In a world where 3-D printing and industrial robotics are making manufacturing more accessible, we need systems that make the actual design process more accessible, too," Schulz says.

Indoor drones make history on Broadway


Over the past year, 398 audiences of up to 2,000 people witnessed an octet of colorful lampshades perform an airborne choreography during Cirque du Soleil's Broadway show Paramour, which ran until April 20th. Placing intelligent, autonomous flying machines in live theater presents a multi-faceted challenge: creating a compelling performance with safety, reliability, and ease of operation. While the compelling performance translates into shaping a convincing creative concept around the drones' choreography, the latter chiefly points to designing computerized systems in lieu of making use of human pilots: Verity Studios' drones are flying mobile robots and navigate autonomously, piloting themselves, only supervised by a human operator. Importantly, the design of such a system cannot stop with the design of fully redundant drones, but needs to extend to all other critical components of the drone show system, including the positioning system, communications architecture, e-stop systems, and control stations.