IT pros get a handle on machine learning and big data


Even as an IT generalist, it pays to at least get comfortable with the matrix of machine learning outcomes, expressed with quadrants for the counts of true positives, true negatives, false positives (items falsely identified as positive) and false negatives (positives that were missed). For example, overall accuracy is usually defined as the number of instances that were truly labeled (true positives plus true negatives) divided by the total instances. If you want to know how many of the actual positive instances you are identifying, sensitivity (or recall) is the number of true positives found divided by the total number of actual positives (true positives plus false negatives). And often precision is important too, which is the number of true positives divided by all items labeled positive (true positives plus false positives).