Results


Preparing the Network for AI and Machine Learning - insideBIGDATA

#artificialintelligence

Other organizations can leverage business data to drive data-informed project management, allowing business leaders to more accurately determine how long certain operations may take and will cost. The fundamentals of these technologies are rooted in data-driven algorithms that enable machines to develop learned responses or predictive capabilities. As a result, with AI and machine learning comes data--big data--that requires resources to be allocated, not only specialists like programmers, but additional on-premises resources such as storage, server CPUs, networking bandwidth, and cloud-hosted storage services. As businesses look to develop their digital transformation strategies and create unique competitive advantage, AI and machine learning are increasingly considered the keys to unlocking the value of an organization's accumulated data.


How AI Protects PayPal's Payments and Performance The Official NVIDIA Blog

#artificialintelligence

With advances in machine learning and the deployments of neural networks, logistic regression-powered models are expanding their uses throughout PayPal. PayPal's deep learning system is able to filter out deceptive merchants and crack down on sales of illegal products. Kutsyy explained the machines can identify "why transactions fail, monitoring businesses more efficiently," avoiding the need to buy more hardware for problem solving. The AI Podcast is available through iTunes, DoggCatcher, Google Play Music, Overcast, PlayerFM, Podbay, Pocket Casts, PodCruncher, PodKicker, Stitcher and Soundcloud.


What is hardcore data science – in practice?

@machinelearnbot

For example, for personalized recommendations, we have been working with learning to rank methods that learn individual rankings over item sets. Figure 1: Typical data science workflow, starting with raw data that is turned into features and fed into learning algorithms, resulting in a model that is applied on future data. This means that this pipeline is iterated and improved many times, trying out different features, different forms of preprocessing, different learning methods, or maybe even going back to the source and trying to add more data sources. Probably the main difference between production systems and data science systems is that production systems are real-time systems that are continuously running.


MIT aims to pry open 'black box' of machine learning systems

#artificialintelligence

The conference was a joint effort between the Massachusetts Technology Leadership Council and MIT to bring industry and academic experts together to discuss advances in artificial intelligence (AI). The computer science and artificial intelligence laboratory, aka CSAIL, at MIT wants to shed light on the black box of today's machine learning systems with a new initiative, SystemsThatLearn@CSAIL. In its quest to shed light on machine learning's black box, SystemsThatLearn@CSAIL had to break down some academic barriers. The program joins the research teams that develop algorithms at MIT with the research teams that develop the large-scale systems the algorithms run on.


AI startups are ready to take on Fortune 500

#artificialintelligence

In another example of disruption through AI, travel companies have begun using behavioral data and predictive analytics to customize brand experiences based on individuals' preferences and patterns. Automating IT functions alone reduces expenses by 14 to 28 percent, so companies that launch using automated services quickly establish a financial advantage over larger, legacy-burdened competitors. Some tech experts believe that the current generation of applied AI systems, such as predictive analytics, will give small businesses advantages through increased automation and efficiency. New BI platforms offer data visualization, customer relationship management programs, and other critical BI services.


How AI Is Changing Your Job Hunt

#artificialintelligence

Utah-based HireVue uses video interviews to examine candidates' word choice, voice inflection, and micro gestures for subtle clues, such as whether their facial expressions contradict their words. Yale School of Management professor Jason Dana, who has studied hiring for years, recently made waves with a high-profile article in the New York Times that excoriated job interviews as useless. But when Google examined its internal evidence, it found that grades, test scores, and a school's pedigree weren't a good predictor of job success. Google created a program called qDroid, which drafts questions for interviewers based on how qDroid parses the data the applicant provided on the qualities Google emphasizes.


AI in HR: Artificial intelligence to bring out the best in people

#artificialintelligence

Its main AI and HR analytics product is Cornerstone Insights, what CTO Mark Goldin called "machine learning in a box." The dispassionate analysis that AI brought to Expedia's recruiting practices can also be applied to performance management, which Holger Mueller, vice president and principal analyst at Constellation Research, considers talent management's core function -- and the part that's most broken. "The applications of AI basically are analytics applications, where the software is using history and algorithms and data to be smarter and smarter over time," Bersin explained. HR is a good target for AI because many HR practices are "handcrafted," cultural in nature and could be better at handling data, according to Josh Bersin, principal and founder of consulting firm Bersin by Deloitte.


How to Solve the New $1 Million Kaggle Problem - Home Value Estimates

@machinelearnbot

More specifically, I provide here high-level advice, rather than about selecting specific statistical models or algorithms, though I also discuss algorithm selection in the last section. If this is the case, an easy improvement consists of increasing value differences between adjacent homes, by boosting the importance of lot area and square footage in locations that have very homogeneous Zillow value estimates. Then for each individual home, compute an estimate based on the bin average, and other metrics such as recent sales price for neighboring homes, trend indicator for the bin in question (using time series analysis), and home features such as school rating, square footage, number of bedrooms, 2- or 3-car garage, lot area, view or not, fireplace(s), and when the home was built. With just a few (properly binned) features, a simple predictive algorithm such as HDT (Hidden Decision Trees - a combination of multiple decision trees and special regression) can work well, for homes in zipcodes (or buckets of zipcodes) with 200 homes with recent historical sales price.


Moore's Law may be out of steam, but the power of artificial intelligence is accelerating

#artificialintelligence

A paper from Google's researchers says they simultaneously used as many as 800 of the powerful and expensive graphics processors that have been crucial to the recent uptick in the power of machine learning (see "10 Breakthrough Technologies 2013: Deep Learning"). Feeding data into deep learning software to train it for a particular task is much more resource intensive than running the system afterwards, but that still takes significant oomph. Intel has slowed the pace at which it introduces generations of new chips with smaller, denser transistors (see "Moore's Law Is Dead. It also motivates the startups--and giants such as Google--creating new chips customized to power machine learning (see "Google Reveals a Powerful New AI Chip and Supercomputer").


Moore's Law may be out of steam, but the power of artificial intelligence is accelerating

#artificialintelligence

A paper from Google's researchers says they simultaneously used as many as 800 of the powerful and expensive graphics processors that have been crucial to the recent uptick in the power of machine learning (see "10 Breakthrough Technologies 2013: Deep Learning"). Feeding data into deep learning software to train it for a particular task is much more resource intensive than running the system afterwards, but that still takes significant oomph. Intel has slowed the pace at which it introduces generations of new chips with smaller, denser transistors (see "Moore's Law Is Dead. It also motivates the startups--and giants such as Google--creating new chips customized to power machine learning (see "Google Reveals a Powerful New AI Chip and Supercomputer").