Results


AI startups are ready to take on Fortune 500

#artificialintelligence

In another example of disruption through AI, travel companies have begun using behavioral data and predictive analytics to customize brand experiences based on individuals' preferences and patterns. Automating IT functions alone reduces expenses by 14 to 28 percent, so companies that launch using automated services quickly establish a financial advantage over larger, legacy-burdened competitors. Some tech experts believe that the current generation of applied AI systems, such as predictive analytics, will give small businesses advantages through increased automation and efficiency. New BI platforms offer data visualization, customer relationship management programs, and other critical BI services.


Moore's Law may be out of steam, but the power of artificial intelligence is accelerating

#artificialintelligence

A paper from Google's researchers says they simultaneously used as many as 800 of the powerful and expensive graphics processors that have been crucial to the recent uptick in the power of machine learning (see "10 Breakthrough Technologies 2013: Deep Learning"). Feeding data into deep learning software to train it for a particular task is much more resource intensive than running the system afterwards, but that still takes significant oomph. Intel has slowed the pace at which it introduces generations of new chips with smaller, denser transistors (see "Moore's Law Is Dead. It also motivates the startups--and giants such as Google--creating new chips customized to power machine learning (see "Google Reveals a Powerful New AI Chip and Supercomputer").


Moore's Law may be out of steam, but the power of artificial intelligence is accelerating

#artificialintelligence

A paper from Google's researchers says they simultaneously used as many as 800 of the powerful and expensive graphics processors that have been crucial to the recent uptick in the power of machine learning (see "10 Breakthrough Technologies 2013: Deep Learning"). Feeding data into deep learning software to train it for a particular task is much more resource intensive than running the system afterwards, but that still takes significant oomph. Intel has slowed the pace at which it introduces generations of new chips with smaller, denser transistors (see "Moore's Law Is Dead. It also motivates the startups--and giants such as Google--creating new chips customized to power machine learning (see "Google Reveals a Powerful New AI Chip and Supercomputer").