A Neural Network that Learns to Interpret Myocardial Planar Thallium Scintigrams

Neural Information Processing Systems

The planar thallium-201 myocardial perfusion scintigram is a widely used diagnostic technique for detecting and estimating the risk of coronary artery disease. Neural networks learned to interpret 100 thallium scintigrams asdetermined by individual expert ratings. Standard error backpropagation wascompared to standard LMS, and LMS combined with one layer of RBF units.


Hidden Markov Models in Molecular Biology: New Algorithms and Applications

Neural Information Processing Systems

Hidden Markov Models (HMMs) can be applied to several important problemsin molecular biology. We introduce a new convergent learning algorithm for HMMs that, unlike the classical Baum-Welch algorithm is smooth and can be applied online or in batch mode, with or without the usual Viterbi most likely path approximation. Left-right HMMs with insertion and deletion states are then trained to represent several protein families including immunoglobulins and kinases. In all cases, the models derived capture all the important statistical properties of the families and can be used efficiently in a number of important tasks such as multiple alignment, motif detection, andclassification.


Forecasting Demand for Electric Power

Neural Information Processing Systems

Our efforts proceed in the context of a problem suggested by the operational needs of a particular electric utility to make daily forecasts of short-term load or demand. Forecasts are made at midday (1 p.m.) on a weekday t ( Monday - Thursday), for the next evening peak e(t) (occuring usually about 8 p.m. in the winter), the daily minimum d(t


Planar Hidden Markov Modeling: From Speech to Optical Character Recognition

Neural Information Processing Systems

We propose in this paper a statistical model (planar hidden Markov model - PHMM) describing statistical properties of images. The model generalizes the single-dimensional HMM, used for speech processing, to the planar case. For this model to be useful an efficient segmentation algorithm, similar to the Viterbi algorithm for HMM, must exist We present conditions in terms of the PHMM parameters that are sufficient to guarantee that the planar segmentation problem can be solved in polynomial time, and describe an algorithm for that. This algorithm aligns optimally the image with the model, and therefore is insensitive to elastic distortions of images. Using this algorithm a joint optima1 segmentation and recognition of the image can be performed, thus overcoming the weakness of traditional OCR systems where segmentation is performed independently before the recognition leading to unrecoverable recognition errors. Tbe PHMM approach was evaluated using a set of isolated band-written digits. An overall digit recognition accuracy of 95% was acbieved. An analysis of the results showed that even in the simple case of recognition of isolated characters, the elimination of elastic distortions enhances the performance Significantly. We expect that the advantage of this approach will be even more significant for tasks such as connected writing recognition/spotting, for whicb there is no known high accuracy method of recognition.


Performance Through Consistency: MS-TDNN's for Large Vocabulary Continuous Speech Recognition

Neural Information Processing Systems

Connectionist Rpeech recognition systems are often handicapped by an inconsistency between training and testing criteria. This problem isaddressed by the Multi-State Time Delay Neural Network (MS-TDNN), a hierarchical phonf'mp and word classifier which uses DTW to modulate its connectivit.y


Transient Signal Detection with Neural Networks: The Search for the Desired Signal

Neural Information Processing Systems

Matched filtering has been one of the most powerful techniques employed for transient detection. Here we will show that a dynamic neural network outperforms the conventional approach. When the artificial neural network (ANN) is trained with supervised learning schemes there is a need to supply the desired signal for all time, although we are only interested in detecting the transient. In this paper we also show the effects on the detection agreement of different strategies to construct the desired signal. The extension of the Bayes decision rule (011 desired signal), optimal in static classification, performs worse than desired signals constructed by random noise or prediction during the background. 1 INTRODUCTION Detection of poorly defined waveshapes in a nonstationary high noise background is an important and difficult problem in signal processing.


Modeling Consistency in a Speaker Independent Continuous Speech Recognition System

Neural Information Processing Systems

We would like to incorporate speaker-dependent consistencies, such as gender, in an otherwise speaker-independent speech recognition system. In this paper we discuss a Gender Dependent Neural Network (GDNN) which can be tuned for each gender, while sharing most of the speaker independent parameters. We use a classification network to help generate gender-dependent phonetic probabilities for a statistical (HMM) recognition system.The gender classification net predicts the gender with high accuracy, 98.3% on a Resource Management test set. However, the integration ofthe GDNN into our hybrid HMM-neural network recognizer provided an improvement in the recognition score that is not statistically significant on a Resource Management test set.


A Hybrid Linear/Nonlinear Approach to Channel Equalization Problems

Neural Information Processing Systems

Channel equalization problem is an important problem in high-speed communications. The sequences of symbols transmitted are distorted by neighboring symbols. Traditionally, the channel equalization problem is considered as a channel-inversion operation. One problem of this approach is that there is no direct correspondence between error probability andresidual error produced by the channel inversion operation. In this paper, the optimal equalizer design is formulated as a classification problem. The optimal classifier can be constructed by Bayes decision rule. In general it is nonlinear. An efficient hybrid linear/nonlinear equalizer approach has been proposed to train the equalizer. The error probability of new linear/nonlinear equalizer has been shown to be better thana linear equalizer in an experimental channel. 1 INTRODUCTION



Physiologically Based Speech Synthesis

Neural Information Processing Systems

This study demonstrates a paradigm for modeling speech production basedon neural networks. Using physiological data from speech utterances, a neural network learns the forward dynamics relating motor commands to muscles and the ensuing articulator behavior that allows articulator trajectories to be generated from motor commands constrained by phoneme input strings and global performance parameters. From these movement trajectories, a second neuralnetwork generates PARCOR parameters that are then used to synthesize the speech acoustics.