Current Issues in Natural Language Generation: An Overview of the AAAI Workshop on Text Planning and Realization

AI Magazine

Text planning is one of the most rapidly growing subfields of language generation. Until the 1988 AAAI conference, no workshop has concentrated on text planning and its relationship to realiza-tion. This report is a summary of that workshop.


The 1988 AAAI Workshop on Explanation

AI Magazine

This article is a summary of the Workshop on Explanation held during the 1988 National Conference on Artificial Intelligence in St. Paul, Minnesota. The purpose of the workshop was to identify key research issues in the rapidly emerging area of expert system explanation.


Knowledge-Based System Applications in Engineering Design: Research at MIT

AI Magazine

Advances in computer hardware and software and engineering methodologies in the 1960s and 1970s led to an increased use of computers by engineers. In design, this use has been limited almost exclusively to algorithmic solutions such as finite-element methods and circuit simulators. However, a number of problems encountered in design are not amenable to purely algorithmic solutions. These problems are often ill structured (the term ill-structured problems is used here to denote problems that do not have a clearly defined algorithmic solution), and an experienced engineer deals with them using judgment and experience. AI techniques, in particular the knowledge-based system (KBS) technology, offer a methodology to solve these ill-structured design problems. In this article, we describe several research projects that utilize KBS techniques for design automation. These projects are (1) the Criteria Yielding, Consistent Labeling with Optimization and Precedents-Based System (CYCLOPS), which generates innovative designs by using a three-stage process: normal search, exploration, and adaptation; (2) the Concept Generator (CONGEN), which is a domain independent framework for conceptual or preliminary design; (3) Constraint Manager (CONMAN), which is a constraint-management system that performs the evaluation and consistency maintenance of constraints arising in design; (4) the distributed and integrated environment for computer-aided engineering (DICE), which facilitates coordination, communication, and control during the entire design and construction/manu-facturing phases; and (5) DESIGN-KIT, which can be envisioned as a new generation of computer-aided engineering environment for process-engineering applications.


On Interface Requirements for Expert Systems

AI Magazine

The user interface to an expert system shares many design objectives and methods with the interface to a computer system of any sort. Nevertheless, significant aspects of behavior and user expectation are peculiar to expert systems and their users. These considerations are discussed here with examples from an actual system. Guidelines for the behavior of expert systems and the responsibility of designers to their users are proposed. Simplicity is highly recommended. Entia non sunt multiplicanda praete necessitatem.


The Power of Physical Representations

AI Magazine

Commonsense reasoning about the physical world, as exemplified by "Iron sinks in water" or "If a ball is dropped it gains speed," will be indispensable in future programs. We argue that to make such predictions (namely, envisioning), programs should use abstract entities (such as the gravitational field), principles (such as the principle of superposition), and laws (such as the conservation of energy) of physics for representation and reasoning. These arguments are in accord with a recent study in physics instruction where expert problem solving is related to the construction of physical representations that contain fictitious, imagined entities such as forces and momenta (Larkin 1983). We give several examples showing the power of physical representations.


Trial by Fire: Understanding the Design Requirements for Agents in Complex Environments

AI Magazine

Phoenix is a real-time, adaptive planner that manages forest fires in a simulated environment. Alternatively, Phoenix is a search for functional relationships between the designs of agents, their behaviors, and the environments in which they work. In fact, both characterizations are appropriate and together exemplify a research methodology that emphasizes complex, dynamic environments and complete, autonomous agents. Within the Phoenix system, we empirically explore the constraints the environment places on the design of intelligent agents. This article describes the underlying methodology and illustrates the architecture and behavior of Phoenix agents.


Letters to the Editor.

AI Magazine

Comments on the Davis article, knowledge base verification, expert systems, the cover of AI Magazine, and an announcement of reports available from the National Academy of Sciences.




Artificial Laboratories

AI Magazine

An artificial laboratory is a hypothetical computing environment of the future that would integrate mathematical and statistical tools with AI methods to assist in computer modeling and simulation. An integrated approach of this kind has great potential for accelerating the rate of scientific discovery.