Learning to classify complex patterns using a VLSI network of spiking neurons

Neural Information Processing Systems

We propose a compact, low power VLSI network of spiking neurons which can learn to classify complex patterns of mean firing rates online and in real-time. The network of integrate-and-fire neurons is connected by bistable synapses that can change their weight using a local spike-based plasticity mechanism. Learning is supervised by a teacher which provides an extra input to the output neurons during training. The synaptic weights are updated only if the current generated by the plastic synapses does not match the output desired by the teacher (as in the perceptron learning rule). We present experimental results that demonstrate how this VLSI network is able to robustly classify uncorrelated linearly separable spatial patterns of mean firing rates.


Locality and low-dimensions in the prediction of natural experience from fMRI

Neural Information Processing Systems

Functional Magnetic Resonance Imaging (fMRI) provides an unprecedented window into the complex functioning of the human brain, typically detailing the activity of thousands of voxels during hundreds of sequential time points. Unfortunately, the interpretation of fMRI is complicated due both to the relatively unknown connection between the hemodynamic response and neural activity and the unknown spatiotemporal characteristics of the cognitive patterns themselves. Here, we use data from the Experience Based Cognition competition to compare global and local methods of prediction applying both linear and nonlinear techniques of dimensionality reduction. We build global low dimensional representations of an fMRI dataset, using linear and nonlinear methods. We learn a set of time series that are implicit functions of the fMRI data, and predict the values of these times series in the future from the knowledge of the fMRI data only. We find effective, low-dimensional models based on the principal components of cognitive activity in classically-defined anatomical regions, the Brodmann Areas. Furthermore for some of the stimuli, the top predictive regions were stable across subjects and episodes, including WernickeÕs area for verbal instructions, visual cortex for facial and body features, and visual-temporal regions (Brodmann Area 7) for velocity. These interpretations and the relative simplicity of our approach provide a transparent and conceptual basis upon which to build more sophisticated techniques for fMRI decoding. To our knowledge, this is the first time that classical areas have been used in fMRI for an effective prediction of complex natural experience.


Scan Strategies for Meteorological Radars

Neural Information Processing Systems

We address the problem of adaptive sensor control in dynamic resource-constrained sensor networks. We focus on a meteorological sensing network comprising radars that can perform sector scanning rather than always scanning 360 degrees. We compare three sector scanning strategies. The sit-and-spin strategy always scans 360 degrees. The limited lookahead strategy additionally uses the expected environmental state K decision epochs in the future, as predicted from Kalman filters, in its decision-making. The full lookahead strategy uses all expected future states by casting the problem as a Markov decision process and using reinforcement learning to estimate the optimal scan strategy. We show that the main benefits of using a lookahead strategy are when there are multiple meteorological phenomena in the environment, and when the maximum radius of any phenomenon is sufficiently smaller than the radius of the radars. We also show that there is a trade-off between the average quality with which a phenomenon is scanned and the number of decision epochs before which a phenomenon is rescanned.


Transfer Learning using Kolmogorov Complexity: Basic Theory and Empirical Evaluations

Neural Information Processing Systems

In transfer learning we aim to solve new problems using fewer examples using information gained from solving related problems. Transfer learning has been successful in practice, and extensive PAC analysis of these methods has been developed. Howeverit is not yet clear how to define relatedness between tasks. This is considered as a major problem as it is conceptually troubling and it makes it unclear how much information to transfer and when and how to transfer it. In this paper we propose to measure the amount of information one task contains about another using conditional Kolmogorov complexity between the tasks. We show how existing theory neatly solves the problem of measuring relatedness and transferring the'right' amount of information in sequential transfer learning in a Bayesian setting. The theory also suggests that, in a very formal and precise sense, no other reasonable transfer method can do much better than our Kolmogorov Complexity theoretic transfer method, and that sequential transfer is always justified. Wealso develop a practical approximation to the method and use it to transfer information between 8 arbitrarily chosen databases from the UCI ML repository.


Fast and Scalable Training of Semi-Supervised CRFs with Application to Activity Recognition

Neural Information Processing Systems

We present a new and efficient semi-supervised training method for parameter estimation and feature selection in conditional random fields (CRFs). In real-world applications such as activity recognition, unlabeled sensor traces are relatively easy to obtain whereas labeled examples are expensive and tedious to collect. Furthermore, the ability to automatically select a small subset of discriminatory features from a large pool can be advantageous in terms of computational speed as well as accuracy. In this paper, we introduce the semi-supervised virtual evidence boosting (sVEB) algorithm for training CRFs -- a semi-supervised extension to the recently developed virtual evidence boosting (VEB) method for feature selection and parameter learning. Semi-supervised VEB takes advantage of the unlabeled data via minimum entropy regularization -- the objective function combines the unlabeled conditional entropy with labeled conditional pseudo-likelihood. The sVEB algorithm reduces the overall system cost as well as the human labeling cost required during training, which are both important considerations in building real world inference systems. In a set of experiments on synthetic data and real activity traces collected from wearable sensors, we illustrate that our algorithm benefits from both the use of unlabeled data and automatic feature selection, and outperforms other semi-supervised training approaches.


Receptive Fields without Spike-Triggering

Neural Information Processing Systems

Stimulus selectivity of sensory neurons is often characterized by estimating their receptive field properties such as orientation selectivity. Receptive fields are usually derived from the mean (or covariance) of the spike-triggered stimulus ensemble. This approach treats each spike as an independent message but does not take into account that information might be conveyed through patterns of neural activity that are distributed across space or time. Can we find a concise description for the processing of a whole population of neurons analogous to the receptive field for single neurons? Here, we present a generalization of the linear receptive field which is not bound to be triggered on individual spikes but can be meaningfully linked to distributed response patterns. More precisely, we seek to identify those stimulus features and the corresponding patterns of neural activity that are most reliably coupled. We use an extension of reverse-correlation methods based on canonical correlation analysis. The resulting population receptive fields span the subspace of stimuli that is most informative about the population response. We evaluate our approach using both neuronal models and multi-electrode recordings from rabbit retinal ganglion cells. We show how the model can be extended to capture nonlinear stimulus-response relationships using kernel canonical correlation analysis, which makes it possible to test different coding mechanisms. Our technique can also be used to calculate receptive fields from multi-dimensional neural measurements such as those obtained from dynamic imaging methods.


Consistent Minimization of Clustering Objective Functions

Neural Information Processing Systems

Clustering is often formulated as a discrete optimization problem. The objective is to find, among all partitions of the data set, the best one according to some quality measure. However, in the statistical setting where we assume that the finite data set has been sampled from some underlying space, the goal is not to find the best partition of the given sample, but to approximate the true partition of the underlying space.We argue that the discrete optimization approach usually does not achieve this goal. As an alternative, we suggest the paradigm of "nearest neighbor clustering". Instead of selecting the best out of all partitions of the sample, it only considers partitions in some restricted function class. Using tools from statistical learning theory we prove that nearest neighbor clustering is statistically consistent. Moreover,its worst case complexity is polynomial by construction, and it can be implemented with small average case complexity using branch and bound.


Support Vector Machine Classification with Indefinite Kernels

Neural Information Processing Systems

In this paper, we propose a method for support vector machine classification using indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss function, our method simultaneously finds the support vectors and a proxy kernel matrix used in computing the loss. This can be interpreted as a robust classification problem where the indefinite kernel matrix is treated as a noisy observation of the true positive semidefinite kernel. Our formulation keeps the problem convex and relatively large problems can be solved efficiently using the analytic center cutting plane method. We compare the performance of our technique with other methods on several data sets.


Boosting the Area under the ROC Curve

Neural Information Processing Systems

We show that any weak ranker that can achieve an area under the ROC curve slightly better than 1/2 (which can be achieved by random guessing) can be efficiently boostedto achieve an area under the ROC curve arbitrarily close to 1. We further show that this boosting can be performed even in the presence of independent misclassificationnoise, given access to a noise-tolerant weak ranker.


Semi-Supervised Multitask Learning

Neural Information Processing Systems

A semi-supervised multitask learning (MTL) framework is presented, in which M parameterized semi-supervised classifiers, each associated with one of M partially labeleddata manifolds, are learned jointly under the constraint of a softsharing priorimposed over the parameters of the classifiers. The unlabeled data are utilized by basing classifier learning on neighborhoods, induced by a Markov random walk over a graph representation of each manifold. Experimental results on real data sets demonstrate that semi-supervised MTL yields significant improvements ingeneralization performance over either semi-supervised single-task learning (STL) or supervised MTL.