Neural Network Influence in Group Technology: A Chronological Survey and Critical Analysis

arXiv.org Artificial Intelligence

This article portrays a chronological review of the influence of Artificial Neural Network in group technology applications in the vicinity of Cellular Manufacturing Systems. The research trend is identified and the evolvement is captured through a critical analysis of the literature accessible from the very beginning of its practice in the early 90's till the 2010. Analysis of the diverse ANN approaches, spotted research pattern, comparison of the clustering efficiencies, the solutions obtained and the tools used make this study exclusive in its class.


Irrespective Priority-Based Regular Properties of High-Intensity Virtual Environments

arXiv.org Artificial Intelligence

We have a lot of relation to the encoding and the Theory of Information, when considering thinking. This is a natural process and, at once, the complex thing we investigate. This always was a challenge - to understand how our mind works, and we are trying to find some universal models for this. A lot of ways have been considered so far, but we are looking for Something, we seek for approaches. And the goal is to find a consistent, noncontradictory view, which should at once be enough flexible in any dimensions to allow to represent various kinds of processes and environments, matters of different nature and diverse objects. Developing of such a model is the destination of this article.


A Tutorial on Probabilistic Latent Semantic Analysis

arXiv.org Machine Learning

In this tutorial, I will discuss the details about how Probabilistic Latent Semantic Analysis (PLSA) is formalized and how different learning algorithms are proposed to learn the model.


Random Spanning Trees and the Prediction of Weighted Graphs

arXiv.org Machine Learning

We investigate the problem of sequentially predicting the binary labels on the nodes of an arbitrary weighted graph. We show that, under a suitable parametrization of the problem, the optimal number of prediction mistakes can be characterized (up to logarithmic factors) by the cutsize of a random spanning tree of the graph. The cutsize is induced by the unknown adversarial labeling of the graph nodes. In deriving our characterization, we obtain a simple randomized algorithm achieving in expectation the optimal mistake bound on any polynomially connected weighted graph. Our algorithm draws a random spanning tree of the original graph and then predicts the nodes of this tree in constant expected amortized time and linear space. Experiments on real-world datasets show that our method compares well to both global (Perceptron) and local (label propagation) methods, while being generally faster in practice.


Mixtures of Shifted Asymmetric Laplace Distributions

arXiv.org Machine Learning

A mixture of shifted asymmetric Laplace distributions is introduced and used for clustering and classification. A variant of the EM algorithm is developed for parameter estimation by exploiting the relationship with the general inverse Gaussian distribution. This approach is mathematically elegant and relatively computationally straightforward. Our novel mixture modelling approach is demonstrated on both simulated and real data to illustrate clustering and classification applications. In these analyses, our mixture of shifted asymmetric Laplace distributions performs favourably when compared to the popular Gaussian approach. This work, which marks an important step in the non-Gaussian model-based clustering and classification direction, concludes with discussion as well as suggestions for future work.


Multi-Objective AI Planning: Evaluating DAE-YAHSP on a Tunable Benchmark

arXiv.org Artificial Intelligence

All standard AI planners to-date can only handle a single objective, and the only way for them to take into account multiple objectives is by aggregation of the objectives. Furthermore, and in deep contrast with the single objective case, there exists no benchmark problems on which to test the algorithms for multi-objective planning. Divide and Evolve (DAE) is an evolutionary planner that won the (single-objective) deterministic temporal satisficing track in the last International Planning Competition. Even though it uses intensively the classical (and hence single-objective) planner YAHSP, it is possible to turn DAE-YAHSP into a multi-objective evolutionary planner. A tunable benchmark suite for multi-objective planning is first proposed, and the performances of several variants of multi-objective DAE-YAHSP are compared on different instances of this benchmark, hopefully paving the road to further multi-objective competitions in AI planning.


An Experiment with Hierarchical Bayesian Record Linkage

arXiv.org Machine Learning

In record linkage (RL), or exact file matching, the goal is to identify the links between entities with information on two or more files. RL is an important activity in areas including counting the population, enhancing survey frames and data, and conducting epidemiological and follow-up studies. RL is challenging when files are very large, no accurate personal identification (ID) number is present on all files for all units, and some information is recorded with error. Without an unique ID number one must rely on comparisons of names, addresses, dates, and other information to find the links. Latent class models can be used to automatically score the value of information for determining match status. Data for fitting models come from comparisons made within groups of units that pass initial file blocking requirements. Data distributions can vary across blocks. This article examines the use of prior information and hierarchical latent class models in the context of RL.


Variational Optimization

arXiv.org Machine Learning

We discuss a general technique that can be used to form a differentiable bound on the optima of non-differentiable or discrete objective functions. We form a unified description of these methods and consider under which circumstances the bound is concave. In particular we consider two concrete applications of the method, namely sparse learning and support vector classification.


A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method

arXiv.org Machine Learning

In this note, we present a new averaging technique for the projected stochastic subgradient method. By using a weighted average with a weight of t+1 for each iterate w_t at iteration t, we obtain the convergence rate of O(1/t) with both an easy proof and an easy implementation. The new scheme is compared empirically to existing techniques, with similar performance behavior.


Simple Regret Optimization in Online Planning for Markov Decision Processes

arXiv.org Artificial Intelligence

We consider online planning in Markov decision processes (MDPs). In online planning, the agent focuses on its current state only, deliberates about the set of possible policies from that state onwards and, when interrupted, uses the outcome of that exploratory deliberation to choose what action to perform next. The performance of algorithms for online planning is assessed in terms of simple regret, which is the agent's expected performance loss when the chosen action, rather than an optimal one, is followed. To date, state-of-the-art algorithms for online planning in general MDPs are either best effort, or guarantee only polynomial-rate reduction of simple regret over time. Here we introduce a new Monte-Carlo tree search algorithm, BRUE, that guarantees exponential-rate reduction of simple regret and error probability. This algorithm is based on a simple yet non-standard state-space sampling scheme, MCTS2e, in which different parts of each sample are dedicated to different exploratory objectives. Our empirical evaluation shows that BRUE not only provides superior performance guarantees, but is also very effective in practice and favorably compares to state-of-the-art. We then extend BRUE with a variant of "learning by forgetting." The resulting set of algorithms, BRUE(alpha), generalizes BRUE, improves the exponential factor in the upper bound on its reduction rate, and exhibits even more attractive empirical performance.