artificial general intelligence

A Very Brief and Critical Discussion on AutoML Artificial Intelligence

Bin Liu School of Computer Science Nanjing University of Posts and Telecommunications Nanjing, 210023 China Email: Abstract This contribution presents a very brief and critical discussion on automated machine learning (AutoML), which is categorized here into two classes, referred to as narrow AutoML and generalized AutoML, respectively. The conclusions yielded from this discussion can be summarized as follows: (1) most existent research on AutoML belongs to the class of narrow AutoML; (2) advances in narrow AutoML are mainly motivated by commercial needs, while any possible benefit obtained is definitely at a cost of increase in computing burdens; (3)the concept of generalized AutoML has a strong tie in spirit with artificial general intelligence (AGI), also called "strong AI", for which obstacles abound for obtaining pivotal progresses. AutoML has recently emerged as a hot research topic in the field of machine learning (ML) and artificial intelligence (AI). As we know, a typical ML pipeline requires a lot of human's participation for e.g., data pre-processing, feature engineering, algorithm selection, model selection and hyperparameter optimization.

The rise of Artificial Intelligence and impending takeover


It was seven minutes to ten o'clock in the morning, and it was the only good thing that had happened." If you get the feeling that these sentences could have been better structured, it's simply because these seemingly disparate, literary threads have been stitched into a novel by an algorithm. That's also why the human author of this novel, Ross Godwin, calls himself'writer of writers'. He is an artist and creative technologist at Google, and also a former Obama administration ghostwriter. In March 2017, Godwin fitted a Cadillac car with a surveillance camera, global positioning system (GPS) unit, microphone and clock, and connected these devices to a portable artificial intelligence (AI) writing machine that fed on these input data in real-time.

You have no idea what artificial intelligence really does


WHEN SOPHIA THE ROBOT first switched on, the world couldn't get enough. It had a cheery personality, it joked with late-night hosts, it had facial expressions that echoed our own. Here it was, finally -- a robot plucked straight out of science fiction, the closest thing to true artificial intelligence that we had ever seen. There's no doubt that Sophia is an impressive piece of engineering. It didn't take much to convince people of Sophia's apparent humanity -- many of Futurism's own articles refer to the robot as "her."

A Primer in Adversarial Machine Learning – The Next Advance in AI – Data Science Central


Summary: What comes next after Deep Learning? How do we get to Artificial General Intelligence? Adversarial Machine Learning is an emerging space that points to that direction and shows that AGI is closer than we think. Deep Learning, Convolutional Neural Nets (CNNs) have given us dramatic improvements in image, speech, and text recognition over the last two years. They suffer from the flaw however that they can be easily fooled by the introduction of even small amounts of noise, random or intentional.

Artificial Intelligence and the Rumsfeld Test - UC Berkeley Sutardja Center


"But there are also unknown unknowns – the ones we don't know we don't know." An artificial intelligence strategy is the corporate equivalent of your spleen: everyone has one, but not everyone understands quite what it will accomplish. There are bold plans afoot everywhere in the world of AI to be sure, but its reality is still distant from the vision of artificial general intelligence (AGI) – i.e., machines displaying intelligence equivalent to the natural intelligence of humans – of popular imagination. Investors in particular need a sober and realistic view of what's achievable in the field of machine learning-driven AI today, versus what promises nothing more than a waste of time and money. There are many business problems that map to the attributes above.

Judging artificial intelligence on its prospects for judging us Answers On


Court is now in session, and author Robert J. Sawyer makes the case for leveraging AI to improve ethics and fairness in civil society. With 23 novels under his belt, as well as scores of short stories, scripts, treatments and more, Hugo and Nebula Award-winning author Robert J. Sawyer is not shy about exploring the technological and cultural landscape of our future. Among the many works in his remarkable and widely regarded career, he authored the trilogy WWW (as in Wake, Watch and Wonder) in which a blind teenage girl uses advanced medical technology to augment her vision, only to discover a super-AI consciousness called Webmind that uses the Internet to grow. During the series, Sawyer investigates the possible consequences that such a super-AI could unleash upon society, and how humans might respond. For his perspective on how humanity might relate to future artificial intelligences and what shape those interactions may take, we asked Sawyer about the dynamics of judgment and control; he also shared his overall sentiment on AI development.

How Machine Learning Works and Why It's Important - PaymentsJournal


Artificial intelligence is one of the most compelling areas of computer science research. AI technologies have gone through periods of innovation and growth but never has AI research and development seemed as promising as it does now. This is due in part to amazing developments in machine learning, deep learning, and neural networks. Machine learning, a cutting-edge branch of artificial intelligence, is propelling the AI field further than ever before. While AI assistants like Siri, Cortana, and Bixby are useful, if not amusing, applications of AI, they lack the ability to learn, self-correct, and self-improve.

The AI, machine learning, and data science conundrum: Who will manage the algorithms? ZDNet


Artificial intelligence and machine learning are being adopted into the enterprise at a rapid clip and adoption is likely to surge in 2019. What comes next is the real business challenge: How will we manage technology that we likely don't understand? The issue is likely to bubble up in the year ahead. For now, most of us are lulled into thinking more algorithms are better and even assuming we can outsource critical thought to models. Why hurt our brains when we can trust Einstein, Watson, Alexa, Google Assistant, and other software tools to think for us?

Advanced artificial intelligence could run the world better than humans ever could


There are fears that tend to come up when people talk about futuristic artificial intelligence -- say, one that could teach itself to learn and become more advanced than anything we humans might be able to comprehend. In the wrong hands, perhaps even on its own, such an advanced algorithm might dominate the world's governments and militaries, impart Orwellian levels of surveillance, manipulation, and social control over societies, and perhaps even control entire battlefields of autonomous lethal weapons such as military drones. But some artificial intelligence experts don't think those fears are well-founded. In fact, highly-advanced artificial intelligence could be better at managing the world than humans have been. These fears themselves are the real danger, because they may hold us back from making that potential a reality.

New artificial intelligence does something extraordinary -- it remembers


When you return to school after summer break, it may feel like you forgot everything you learned the year before. But if you learned like an AI system does, you actually would have -- as you sat down for your first day of class, your brain would take that as a cue to wipe the slate clean and start from scratch. AI systems' tendency to forget the things it previously learned upon taking on new information is called catastrophic forgetting. See, cutting-edge algorithms learn, so to speak, after analyzing countless examples of what they're expected to do. A facial recognition AI system, for instance, will analyze thousands of photos of people's faces, likely photos that have been manually annotated, so that it will be able to detect a face when it pops up in a video feed.