Can AI Be a Racist Too?

#artificialintelligence

This predisposition can make the AI show racism, sexism, or different kinds of discrimination. This is typically viewed as a political issue and disregarded by researchers. The outcome is that just non-technical people write on the point. These individuals frequently propose approach suggestions to build diversity among AI analysts. The irony is faltering: A black AI researcher can't assemble an AI any not quite the same as a white AI researcher.


Artificial Intelligence A-Z : Learn How To Build An AI

#artificialintelligence

Combine the power of Data Science, Machine Learning and Deep Learning to create powerful AI for Real-World applications! Your CCNA start Deep Learning A-Z: Hands-On Artificial Neural Networks Deep Learning and Computer Vision A-Z: OpenCV, SSD & GANs Artificial Intelligence for Business ZERO to GOD Python 3.8 FULL STACK MASTERCLASS 45 AI projects Comment Policy: Please write your comments that match the topic of this page's posts. Comments that contain links will not be displayed until they are approved.


ISE Magazine - April 2020

#artificialintelligence

Digital transformation's intelligent workflow can enhance industrial innovation By Ben Amaba, Valerie Clark, Dawn Cross and Mike McMahon How Turing's explorations of sunflowers helped inspire artificial intelligence By Joseph Byrum


Google is using AI to design AI processors much faster than humans can

#artificialintelligence

To one extent or another artificial intelligence is practically everywhere these days, from games to image upscaling to smartphone "personal assistants." More than ever, researchers are pouring a ton of time, money, and effort into AI designs. At Google, AI algorithms are even being used to design AI chips. This is not a complete design of silicon that Google is dealing with, but a subset of chip design known as placement optimization. This is a time-consuming task for humans.


Artificial Intelligence Decodes Speech from Brain Activity: Study

#artificialintelligence

The readout of brain activity and audio of the spoken sentences were input to an algorithm, which learned to recognize how the parts of speech were formed. The initial results were highly inaccurate, for instance, interpreting brain activity from hearing the sentence "she wore warm fleecy woolen overalls" as "the oasis was a mirage." As the program learned over time, it was able to make translations with limited errors, such as interpreting brain activity in response to hearing "the ladder was used to rescue the cat and the man" as "which ladder will be used to rescue the cat and the man."


Podcast: What do people really think about artificial intelligence? - The Data Scientist

#artificialintelligence

AI is disrupting multiple industries and is becoming part of everyday life. So, it makes sense to try and find out what society thinks about it. With some many different sources of information (and misinformation) people have different opinions varying from optimism to predictions about the impeding doom of humanity. The Mozilla Foundation published a very interesting report, based on a survey where they asked people what they think of AI. The results are surprising and interesting.


Researchers find AI is bad at predicting GPA, grit, eviction, job training, layoffs, and material hardship

#artificialintelligence

A paper coauthored by over 112 researchers across 160 data and social science teams found that AI and statistical models, when used to predict six life outcomes for children, parents, and households, weren't very accurate even when trained on 13,000 data points from over 4,000 families. They assert that the work is a cautionary tale on the use of predictive modeling, especially in the criminal justice system and social support programs. "Here's a setting where we have hundreds of participants and a rich data set, and even the best AI results are still not accurate," said study co-lead author Matt Salganik, a professor of sociology at Princeton and interim director of the Center for Information Technology Policy at the Woodrow Wilson School of Public and International Affairs. "These results show us that machine learning isn't magic; there are clearly other factors at play when it comes to predicting the life course." The study, which was published this week in the journal Proceedings of the National Academy of Sciences, is the fruit of the Fragile Families Challenge, a multi-year collaboration that sought to recruit researchers to complete a predictive task by predicting the same outcomes using the same data.


Why Artificial Intelligence is (Still) Human Intelligence

#artificialintelligence

At its core, Artificial Intelligence and its partner Machine Learning (abbreviated as AI/ML) is math. Specifically, it's probability – the application of weighted probabilistic networks at a computational scale we've never been able to perform before, which allows the computed probabilities to become self-training. It's that characteristic more than any other that makes AI seem like wizardry. The little cylinder on the kitchen counter that suddenly lights up when you call it by name feels like something out of science fiction, but that entire process is the end product of the re-ingestion of new data to help fine-tune a highly complex probabilistic graph. The voice assistant recognizes its "name" not because it's self-aware but because it has been programmed to match an audio waveform to a database of known waveforms with certain characteristics.


Frontier Development Lab Is Going Virtual: Now Accepting Applications For Paid Research Opportunities - SpaceWatch.Global

#artificialintelligence

The Frontier Development Lab (FDL) Europe applies AI technologies to science to push the frontiers of research and develop new tools to help solve some of the biggest challenges that humanity faces. These range from the effects of climate change to predicting space weather, from improving disaster response, to identifying meteorites that could hold the key to the history of our universe. FDL brings researchers from the cutting-edge of AI and data science, and teams them up with their counterparts from the space sector for an intensive eight-week research sprint, based on a range of challenge areas. The results far exceed what any individual could develop in the same time period, or even in years of individual research. A key aspect of our success is the careful formation of small interdisciplinary teams focused on tackling specific challenges.


Brain Implants and AI Model Used To Translate Thought Into Text

#artificialintelligence

Researchers at the University of California, San Francisco have recently created an AI system that can produce text by analyzing a person's brain activity, essentially translating their thoughts into text. The AI takes neural signals from a user and decodes them, and it can decipher up to 250 words in real-time based on a set of between 30 to 50 sentences. As reported by the Independent, the AI model was trained on neural signals collected from four women. The participants in the experiment had electrodes implanted in their brains to monitor for the occurrence of epileptic seizures. The participants were instructed to read sentences aloud, and their neural signals were fed to the AI model.