Education


Artificial Intelligence #3:kNN & Bayes Classification method

#artificialintelligence

This can be thought of as the training set for the algorithm, though no explicit training step is required.by Sobhan N. What you'll learn Use k Nearest Neighbor classification method to classify datasets. Write your own code to make k Nearest Neighbor classification method by yourself. Use k Nearest Neighbor classification method to classify IRIS dataset. Use Naive Bayes classification method to classify datasets.


The Problem With Including AI In School Curriculum

#artificialintelligence

One of the main reasons to integrate AI in the current school curriculum is to make the upcoming generation familiar with technology. The Government of India and the educational board have been pushing for more artificial intelligence to be integrated into the education system, not from the perspective of enhancing it, but also with the intention of making young minds more aware and skilled when it comes to artificial intelligence. Today, children are curious about the smart conversational devices and AI used in applications like Siri and Alexa; some of them even wonder how Netflix gives them precise recommendations. Gradually, they will grow curious and try to learn what algorithms are, what a neural network is, and how they work. The Government of India and the educational board have been taking measures to make the existing school curriculum more AI-centric with a firm belief that the students will learn about AI, have fun and also take India forward.


Royal Dutch Shell reskills workers in artificial intelligence as part of huge energy transition

#artificialintelligence

Working at Royal Dutch Shell's Deepwater division in New Orleans gives Barbara Waelde a front-row seat to how the right data can unlock crucial information for the oil giant. So when her supervisor asked her last year if she was interested in a program that could sharpen her digital and data science capabilities, Waelde, 55, jumped at the chance. Since she began her online coursework, the seven-year Shell veteran has learned Python programming, supervised learning algorithms and data modeling, among other skills. Shell began making these online courses available to U.S. employees long before COVID-19 upended daily life. And according to the oil giant, there are no plans to halt or cancel any of them, despite the fact that on March 23 it announced plans to slash operating costs by $9 billion.


Deep reinforcement learning for supply chain and price optimization

#artificialintelligence

Supply chain and price management were among the first areas of enterprise operations that adopted data science and combinatorial optimization methods and have a long history of using these techniques with great success. Although a wide range of traditional optimization methods are available for inventory and price management applications, deep reinforcement learning has the potential to substantially improve the optimization capabilities for these and other types of enterprise operations due to impressive recent advances in the development of generic self-learning algorithms for optimal control. In this article, we explore how deep reinforcement learning methods can be applied in several basic supply chain and price management scenarios. The traditional price optimization process in retail or manufacturing environments is typically framed as a what-if analysis of different pricing scenarios using some sort of demand model. In many cases, the development of a demand model is challenging because it has to properly capture a wide range of factors and variables that influence demand, including regular prices, discounts, marketing activities, seasonality, competitor prices, cross-product cannibalization, and halo effects. Once the demand model is developed, however, the optimization process for pricing decisions is relatively straightforward, and standard techniques such as linear or integer programming typically suffice. For instance, consider an apparel retailer that purchases a seasonal product at the beginning of the season and has to sell it out by the end of the period. Assuming that a retailer chooses pricing levels from a discrete set (e.g., \$59.90, \$69.90, etc.) and can make price changes frequently (e.g., weekly), we can pose the following optimization problem: The first constraint ensures that each time interval has only one price, and the second constraint ensures that all demands sum up to the available stock level.


Artificial Intelligence A-Z : Learn How To Build An AI

#artificialintelligence

Combine the power of Data Science, Machine Learning and Deep Learning to create powerful AI for Real-World applications! Your CCNA start Deep Learning A-Z: Hands-On Artificial Neural Networks Deep Learning and Computer Vision A-Z: OpenCV, SSD & GANs Artificial Intelligence for Business ZERO to GOD Python 3.8 FULL STACK MASTERCLASS 45 AI projects Comment Policy: Please write your comments that match the topic of this page's posts. Comments that contain links will not be displayed until they are approved.


The Coming Era of Decision Machines

#artificialintelligence

These concerns have been present whenever we make important decisions. What's new is the much, much larger scale at which we now rely on algorithms to help us decide. Human errors that may have once been idiosyncratic may now become systematic. "Artificial intelligence is the pursuit of machines that are able to act purposefully to make decisions towards the pursuit of goals," wrote Harvard University Professor David Parkes in "A Responsibility to Judge Carefully in the Era of Decision Machines," an essay recently published as part of Harvard's Digital Initiative. "Machines need to be able to predict to decide, but decision making requires much more," he wrote.


Top 7 Resources To Learn Facial Recognition - Analytics India Magazine

#artificialintelligence

Facial recognition is arguably the most talked-about technology within the artificial intelligence landscape due to its wide range of applications and biased outputs. Several countries are adopting this technology for surveillance purposes, most notably China and India. Both are among the first countries to make use of this technology on a large scale. Even the EU has pulled back from banning this technology for some years and has left it for the countries to decide. This will increase the demand for professionals who can develop solutions around facial recognition technology to simplify life and make operations efficient.


Automation May Take Jobs--but AI Will Create Them

#artificialintelligence

Chances are you've already encountered, more than a few times, truly frightening predictions about artificial intelligence and its implications for the future of humankind. The machines are coming and they want your job, at a minimum. Scary stories are easy to find in all the erudite places where the tech visionaries of Silicon Valley and Seattle, the cosmopolitan elite of New York City, and the policy wonks of Washington, DC, converge--TED talks, Davos, ideas festivals, Vanity Fair, the New Yorker, The New York Times, Hollywood films, South by Southwest, Burning Man. The brilliant innovator Elon Musk and the genius theoretical physicist Stephen Hawking have been two of the most quotable and influential purveyors of these AI predictions. AI poses "an existential threat" to civilization, Elon Musk warned a gathering of governors in Rhode Island one summer's day.


Deploying machine learning models as serverless APIs Amazon Web Services

#artificialintelligence

Machine learning (ML) practitioners gather data, design algorithms, run experiments, and evaluate the results. After you create an ML model, you face another problem: serving predictions at scale cost-effectively. Serverless technology empowers you to serve your model predictions without worrying about how to manage the underlying infrastructure. Services like AWS Lambda only charge for the amount of time that you run your code, which allows for significant cost savings. Depending on latency and memory requirements, AWS Lambda can be an excellent choice for easily deploying ML models.


The Big Reboot, Part 1 – Rethinking Education and Employment in an Automated Era Fast Future Publishing

#artificialintelligence

The Big Reboot is a two-part exploration of how we prepare society for the potential impacts of technological disruption, job automation, and the continuing shifts taking place in the global economy. In this first discussion we look at practical strategies for i) raising skills and digital literacy across society, and ii) generating the new ventures and job openings required to fill the employment gap left by those that are displaced by technology. We are reaching peak hysteria in the debate about the potential impact of artificial intelligence (AI) and automation on tasks, roles, jobs, employment, and incomes. On an almost weekly basis, we see projections of wholesale job devastation through automation. These doom-laden forecasts vie with outlandishly optimistic forecasts from AI vendors and consultants suggesting that millions of new roles will be created because of our smart new tech toys.