Information Technology

An Embarrassingly Simple Speed-Up of Belief Propagation with Robust Potentials Artificial Intelligence

We present an exact method of greatly speeding up belief propagation (BP) for a wide variety of potential functions in pairwise MRFs and other graphical models. Specifically, our technique applies whenever the pairwise potentials have been {\em truncated} to a constant value for most pairs of states, as is commonly done in MRF models with robust potentials (such as stereo) that impose an upper bound on the penalty assigned to discontinuities; for each of the $M$ possible states in one node, only a smaller number $m$ of compatible states in a neighboring node are assigned milder penalties. The computational complexity of our method is $O(mM)$, compared with $O(M^2)$ for standard BP, and we emphasize that the method is {\em exact}, in contrast with related techniques such as pruning; moreover, the method is very simple and easy to implement. Unlike some previous work on speeding up BP, our method applies both to sum-product and max-product BP, which makes it useful in any applications where marginal probabilities are required, such as maximum likelihood estimation. We demonstrate the technique on a stereo MRF example, confirming that the technique speeds up BP without altering the solution.

A Comprehensive Survey of Data Mining-based Fraud Detection Research Artificial Intelligence

This survey paper categorises, compares, and summarises from almost all published technical and review articles in automated fraud detection within the last 10 years. It defines the professional fraudster, formalises the main types and subtypes of known fraud, and presents the nature of data evidence collected within affected industries. Within the business context of mining the data to achieve higher cost savings, this research presents methods and techniques together with their problems. Compared to all related reviews on fraud detection, this survey covers much more technical articles and is the only one, to the best of our knowledge, which proposes alternative data and solutions from related domains.

Mantis: Predicting System Performance through Program Analysis and Modeling Artificial Intelligence

We present Mantis, a new framework that automatically predicts program performance with high accuracy. Mantis integrates techniques from programming language and machine learning for performance modeling, and is a radical departure from traditional approaches. Mantis extracts program features, which are information about program execution runs, through program instrumentation. It uses machine learning techniques to select features relevant to performance and creates prediction models as a function of the selected features. Through program analysis, it then generates compact code slices that compute these feature values for prediction. Our evaluation shows that Mantis can achieve more than 93% accuracy with less than 10% training data set, which is a significant improvement over models that are oblivious to program features. The system generates code slices that are cheap to compute feature values.

Active Tuples-based Scheme for Bounding Posterior Beliefs

Journal of Artificial Intelligence Research

The paper presents a scheme for computing lower and upper bounds on the posterior marginals in Bayesian networks with discrete variables. Its power lies in its ability to use any available scheme that bounds the probability of evidence or posterior marginals and enhance its performance in an anytime manner. The scheme uses the cutset conditioning principle to tighten existing bounding schemes and to facilitate anytime behavior, utilizing a fixed number of cutset tuples. The accuracy of the bounds improves as the number of used cutset tuples increases and so does the computation time. We demonstrate empirically the value of our scheme for bounding posterior marginals and probability of evidence using a variant of the bound propagation algorithm as a plug-in scheme.

Case-Based Subgoaling in Real-Time Heuristic Search for Video Game Pathfinding

Journal of Artificial Intelligence Research

Real-time heuristic search algorithms satisfy a constant bound on the amount of planning per action, independent of problem size. As a result, they scale up well as problems become larger. This property would make them well suited for video games where Artificial Intelligence controlled agents must react quickly to user commands and to other agents' actions. On the downside, real-time search algorithms employ learning methods that frequently lead to poor solution quality and cause the agent to appear irrational by re-visiting the same problem states repeatedly. The situation changed recently with a new algorithm, D LRTA*, which attempted to eliminate learning by automatically selecting subgoals. D LRTA* is well poised for video games, except it has a complex and memory-demanding pre-computation phase during which it builds a database of subgoals. In this paper, we propose a simpler and more memory-efficient way of pre-computing subgoals thereby eliminating the main obstacle to applying state-of-the-art real-time search methods in video games. The new algorithm solves a number of randomly chosen problems off-line, compresses the solutions into a series of subgoals and stores them in a database. When presented with a novel problem on-line, it queries the database for the most similar previously solved case and uses its subgoals to solve the problem. In the domain of pathfinding on four large video game maps, the new algorithm delivers solutions eight times better while using 57 times less memory and requiring 14% less pre-computation time.

A Model-Based Active Testing Approach to Sequential Diagnosis

Journal of Artificial Intelligence Research

Model-based diagnostic reasoning often leads to a large number of diagnostic hypotheses. The set of diagnoses can be reduced by taking into account extra observations (passive monitoring), measuring additional variables (probing) or executing additional tests (sequential diagnosis/test sequencing). In this paper we combine the above approaches with techniques from Automated Test Pattern Generation (ATPG) and Model-Based Diagnosis (MBD) into a framework called FRACTAL (FRamework for ACtive Testing ALgorithms). Apart from the inputs and outputs that connect a system to its environment, in active testing we consider additional input variables to which a sequence of test vectors can be supplied. We address the computationally hard problem of computing optimal control assignments (as defined in FRACTAL) in terms of a greedy approximation algorithm called FRACTAL-G. We compare the decrease in the number of remaining minimal cardinality diagnoses of FRACTAL-G to that of two more FRACTAL algorithms: FRACTAL-ATPG and FRACTAL-P. FRACTAL-ATPG is based on ATPG and sequential diagnosis while FRACTAL-P is based on probing and, although not an active testing algorithm, provides a baseline for comparing the lower bound on the number of reachable diagnoses for the FRACTAL algorithms. We empirically evaluate the trade-offs of the three FRACTAL algorithms by performing extensive experimentation on the ISCAS85/74XXX benchmark of combinational circuits.

Narrative Planning: Balancing Plot and Character

Journal of Artificial Intelligence Research

Narrative, and in particular storytelling, is an important part of the human experience. Consequently, computational systems that can reason about narrative can be more effective communicators, entertainers, educators, and trainers. One of the central challenges in computational narrative reasoning is narrative generation, the automated creation of meaningful event sequences. There are many factors -- logical and aesthetic -- that contribute to the success of a narrative artifact. Central to this success is its understandability. We argue that the following two attributes of narratives are universal: (a) the logical causal progression of plot, and (b) character believability. Character believability is the perception by the audience that the actions performed by characters do not negatively impact the audience's suspension of disbelief. Specifically, characters must be perceived by the audience to be intentional agents. In this article, we explore the use of refinement search as a technique for solving the narrative generation problem -- to find a sound and believable sequence of character actions that transforms an initial world state into a world state in which goal propositions hold. We describe a novel refinement search planning algorithm -- the Intent-based Partial Order Causal Link (IPOCL) planner -- that, in addition to creating causally sound plot progression, reasons about character intentionality by identifying possible character goals that explain their actions and creating plan structures that explain why those characters commit to their goals. We present the results of an empirical evaluation that demonstrates that narrative plans generated by the IPOCL algorithm support audience comprehension of character intentions better than plans generated by conventional partial-order planners.

Exploiting Unlabeled Data to Enhance Ensemble Diversity Artificial Intelligence

Ensemble learning aims to improve generalization ability by using multiple base learners. It is well-known that to construct a good ensemble, the base learners should be accurate as well as diverse. In this paper, unlabeled data is exploited to facilitate ensemble learning by helping augment the diversity among the base learners. Specifically, a semi-supervised ensemble method named UDEED is proposed. Unlike existing semi-supervised ensemble methods where error-prone pseudo-labels are estimated for unlabeled data to enlarge the labeled data to improve accuracy, UDEED works by maximizing accuracies of base learners on labeled data while maximizing diversity among them on unlabeled data. Experiments show that UDEED can effectively utilize unlabeled data for ensemble learning and is highly competitive to well-established semi-supervised ensemble methods.

Cooperative Games with Overlapping Coalitions

Journal of Artificial Intelligence Research

In the usual models of cooperative game theory, the outcome of a coalition formation process is either the grand coalition or a coalition structure that consists of disjoint coalitions. However, in many domains where coalitions are associated with tasks, an agent may be involved in executing more than one task, and thus may distribute his resources among several coalitions. To tackle such scenarios, we introduce a model for cooperative games with overlapping coalitionsor overlapping coalition formation (OCF) games. We then explore the issue of stability in this setting. In particular, we introduce a notion of the core, which generalizes the corresponding notion in the traditional (non-overlapping) scenario. Then, under some quite general conditions, we characterize the elements of the core, and show that any element of the core maximizes the social welfare. We also introduce a concept of balancedness for overlapping coalitional games, and use it to characterize coalition structures that can be extended to elements of the core. Finally, we generalize the notion of convexity to our setting, and show that under some natural assumptions convex games have a non-empty core. Moreover, we introduce two alternative notions of stability in OCF that allow a wider range of deviations, and explore the relationships among the corresponding definitions of the core, as well as the classic (non-overlapping) core and the Aubin core. We illustrate the general properties of the three cores, and also study them from a computational perspective, thus obtaining additional insights into their fundamental structure.

Optimal Bangla Keyboard Layout using Association Rule of Data Mining Artificial Intelligence

In this paper we present an optimal Bangla Keyboard Layout, which distributes the load equally on both hands so that maximizing the ease and minimizing the effort. Bangla alphabet has a large number of letters, for this it is difficult to type faster using Bangla keyboard. Our proposed keyboard will maximize the speed of operator as they can type with both hands parallel. Here we use the association rule of data mining to distribute the Bangla characters in the keyboard. First, we analyze the frequencies of data consisting of monograph, digraph and trigraph, which are derived from data wire-house, and then used association rule of data mining to distribute the Bangla characters in the layout. Finally, we propose a Bangla Keyboard Layout. Experimental results on several keyboard layout shows the effectiveness of the proposed approach with better performance.