Collaborating Authors


Forecasting: theory and practice Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021 Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.

Evolution of artificial intelligence languages, a systematic literature review Artificial Intelligence

The field of Artificial Intelligence (AI) has undoubtedly received significant attention in recent years. AI is being adopted to provide solutions to problems in fields such as medicine, engineering, education, government and several other domains. In order to analyze the state of the art of research in the field of AI, we present a systematic literature review focusing on the Evolution of AI programming languages. We followed the systematic literature review method by searching relevant databases like SCOPUS, IEEE Xplore and Google Scholar. EndNote reference manager was used to catalog the relevant extracted papers. Our search returned a total of 6565 documents, whereof 69 studies were retained. Of the 69 retained studies, 15 documents discussed LISP programming language, another 34 discussed PROLOG programming language, the remaining 20 documents were spread between Logic and Object Oriented Programming (LOOP), ARCHLOG, Epistemic Ontology Language with Constraints (EOLC), Python, C++, ADA and JAVA programming languages. This review provides information on the year of implementation, development team, capabilities, limitations and applications of each of the AI programming languages discussed. The information in this review could guide practitioners and researchers in AI to make the right choice of languages to implement their novel AI methods.