Collaborating Authors


Balancing Biases and Preserving Privacy on Balanced Faces in the Wild Artificial Intelligence

There are demographic biases in the SOTA CNN used for FR. Our BFW dataset serves as a proxy to measure bias across ethnicity and gender subgroups, allowing us to characterize FR performances per subgroup. We show performances are non-optimal when a single score threshold is used to determine whether sample pairs are genuine or imposter. Furthermore, actual performance ratings vary greatly from the reported across subgroups. Thus, claims of specific error rates only hold true for populations matching that of the validation data. We mitigate the imbalanced performances using a novel domain adaptation learning scheme on the facial encodings extracted using SOTA deep nets. Not only does this technique balance performance, but it also boosts the overall performance. A benefit of the proposed is to preserve identity information in facial features while removing demographic knowledge in the lower dimensional features. The removal of demographic knowledge prevents future potential biases from being injected into decision-making. Additionally, privacy concerns are satisfied by this removal. We explore why this works qualitatively with hard samples. We also show quantitatively that subgroup classifiers can no longer learn from the encodings mapped by the proposed.

The AI Index 2021 Annual Report Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.

A Comprehensive Review of Computer-aided Whole-slide Image Analysis: from Datasets to Feature Extraction, Segmentation, Classification, and Detection Approaches Artificial Intelligence

With the development of computer-aided diagnosis (CAD) and image scanning technology, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital pathology. Since 2004, WSI has been used more and more in CAD. Since machine vision methods are usually based on semi-automatic or fully automatic computers, they are highly efficient and labor-saving. The combination of WSI and CAD technologies for segmentation, classification, and detection helps histopathologists obtain more stable and quantitative analysis results, save labor costs and improve diagnosis objectivity. This paper reviews the methods of WSI analysis based on machine learning. Firstly, the development status of WSI and CAD methods are introduced. Secondly, we discuss publicly available WSI datasets and evaluation metrics for segmentation, classification, and detection tasks. Then, the latest development of machine learning in WSI segmentation, classification, and detection are reviewed continuously. Finally, the existing methods are studied, the applicabilities of the analysis methods are analyzed, and the application prospects of the analysis methods in this field are forecasted.

Millimeter Wave Sensing: A Review of Application Pipelines and Building Blocks Artificial Intelligence

The increasing bandwidth requirement of new wireless applications has lead to standardization of the millimeter wave spectrum for high-speed wireless communication. The millimeter wave spectrum is part of 5G and covers frequencies between 30 and 300 GHz corresponding to wavelengths ranging from 10 to 1 mm. Although millimeter wave is often considered as a communication medium, it has also proved to be an excellent 'sensor', thanks to its narrow beams, operation across a wide bandwidth, and interaction with atmospheric constituents. In this paper, which is to the best of our knowledge the first review that completely covers millimeter wave sensing application pipelines, we provide a comprehensive overview and analysis of different basic application pipeline building blocks, including hardware, algorithms, analytical models, and model evaluation techniques. The review also provides a taxonomy that highlights different millimeter wave sensing application domains. By performing a thorough analysis, complying with the systematic literature review methodology and reviewing 165 papers, we not only extend previous investigations focused only on communication aspects of the millimeter wave technology and using millimeter wave technology for active imaging, but also highlight scientific and technological challenges and trends, and provide a future perspective for applications of millimeter wave as a sensing technology.

Confidence Estimation via Auxiliary Models Machine Learning

Reliably quantifying the confidence of deep neural classifiers is a challenging yet fundamental requirement for deploying such models in safety-critical applications. In this paper, we introduce a novel target criterion for model confidence, namely the true class probability (TCP). We show that TCP offers better properties for confidence estimation than standard maximum class probability (MCP). Since the true class is by essence unknown at test time, we propose to learn TCP criterion from data with an auxiliary model, introducing a specific learning scheme adapted to this context. We evaluate our approach on the task of failure prediction and of self-training with pseudo-labels for domain adaptation, which both necessitate effective confidence estimates. Extensive experiments are conducted for validating the relevance of the proposed approach in each task. We study various network architectures and experiment with small and large datasets for image classification and semantic segmentation. In every tested benchmark, our approach outperforms strong baselines.

Kernel Anomalous Change Detection for Remote Sensing Imagery Machine Learning

Anomalous change detection (ACD) is an important problem in remote sensing image processing. Detecting not only pervasive but also anomalous or extreme changes has many applications for which methodologies are available. This paper introduces a nonlinear extension of a full family of anomalous change detectors. In particular, we focus on algorithms that utilize Gaussian and elliptically contoured (EC) distribution and extend them to their nonlinear counterparts based on the theory of reproducing kernels' Hilbert space. We illustrate the performance of the kernel methods introduced in both pervasive and ACD problems with real and simulated changes in multispectral and hyperspectral imagery with different resolutions (AVIRIS, Sentinel-2, WorldView-2, and Quickbird). A wide range of situations is studied in real examples, including droughts, wildfires, and urbanization. Excellent performance in terms of detection accuracy compared to linear formulations is achieved, resulting in improved detection accuracy and reduced false-alarm rates. Results also reveal that the EC assumption may be still valid in Hilbert spaces. We provide an implementation of the algorithms as well as a database of natural anomalous changes in real scenarios

Causal Adversarial Network for Learning Conditional and Interventional Distributions Machine Learning

We propose a generative Causal Adversarial Network (CAN) for learning and sampling from conditional and interventional distributions. In contrast to the existing CausalGAN which requires the causal graph to be given, our proposed framework learns the causal relations from the data and generates samples accordingly. The proposed CAN comprises a two-fold process namely Label Generation Network (LGN) and Conditional Image Generation Network (CIGN). The LGN is a GAN-based architecture which learns and samples from the causal model over labels. The sampled labels are then fed to CIGN, a conditional GAN architecture, which learns the relationships amongst labels and pixels and pixels themselves and generates samples based on them. This framework is equipped with an intervention mechanism which enables. the model to generate samples from interventional distributions. We quantitatively and qualitatively assess the performance of CAN and empirically show that our model is able to generate both interventional and conditional samples without having access to the causal graph for the application of face generation on CelebA data.

Modeling human visual search: A combined Bayesian searcher and saliency map approach for eye movement guidance in natural scenes Artificial Intelligence

Finding objects is essential for almost any daily-life visual task. Saliency models have been useful to predict fixation locations in natural images, but are static, i.e., they provide no information about the time-sequence of fixations. Nowadays, one of the biggest challenges in the field is to go beyond saliency maps to predict a sequence of fixations related to a visual task, such as searching for a given target. Bayesian observer models have been proposed for this task, as they represent visual search as an active sampling process. Nevertheless, they were mostly evaluated on artificial images, and how they adapt to natural images remains largely unexplored. Here, we propose a unified Bayesian model for visual search guided by saliency maps as prior information. We validated our model with a visual search experiment in natural scenes recording eye movements. We show that, although state-of-the-art saliency models perform well in predicting the first two fixations in a visual search task, their performance degrades to chance afterward. This suggests that saliency maps alone are good to model bottom-up first impressions, but are not enough to explain the scanpaths when top-down task information is critical. Thus, we propose to use them as priors of Bayesian searchers. This approach leads to a behavior very similar to humans for the whole scanpath, both in the percentage of target found as a function of the fixation rank and the scanpath similarity, reproducing the entire sequence of eye movements.

Sparse-RS: a versatile framework for query-efficient sparse black-box adversarial attacks Machine Learning

A large body of research has focused on adversarial attacks which require to modify all input features with small $l_2$- or $l_\infty$-norms. In this paper we instead focus on query-efficient sparse attacks in the black-box setting. Our versatile framework, Sparse-RS, based on random search achieves state-of-the-art success rate and query efficiency for different sparse attack models such as $l_0$-bounded perturbations (outperforming established white-box methods), adversarial patches, and adversarial framing. We show the effectiveness of Sparse-RS on different datasets considering problems from image recognition and malware detection and multiple variations of sparse threat models, including targeted and universal perturbations. In particular Sparse-RS can be used for realistic attacks such as universal adversarial patch attacks without requiring a substitute model. The code of our framework is available at

Artificial Intelligence in Cardiology: Present and Future


For the purpose of this narrative review, we searched PubMed and MEDLINE databases with no date restriction using search terms related to AI and medicine and cardiology subspecialties. Articles were reviewed and selected for inclusion on the basis of relevance. This article highlights that the role of ML in cardiovascular medicine is rapidly emerging, and mounting evidence indicates it will power the new tools that drive the field. Among other uses, AI has been deployed to interpret echocardiograms, to automatically identify heart rhythms from an ECG, to uniquely identify an individual using the ECG as a biometric signal, and to detect the presence of heart disease such as left ventricular dysfunction from the surface ECG.6x6Attia, Z.I., Kapa, S., Lopez-Jimenez, F. et al.