Goto

Collaborating Authors

Results


Quality4.0 -- Transparent product quality supervision in the age of Industry 4.0

arXiv.org Artificial Intelligence

Progressive digitalization is changing the game of many industrial sectors. Focus-ing on product quality the main profitability driver of this so-called Industry 4.0 will be the horizontal integration of information over the complete supply chain. Therefore, the European RFCS project 'Quality4.0' aims in developing an adap-tive platform, which releases decisions on product quality and provides tailored information of high reliability that can be individually exchanged with customers. In this context Machine Learning will be used to detect outliers in the quality data. This paper discusses the intermediate project results and the concepts developed so far for this horizontal integration of quality information.


Automated simulation and verification of process models discovered by process mining

arXiv.org Artificial Intelligence

This paper presents a novel approach for automated analysis of process models discovered using process mining techniques. Process mining explores underlying processes hidden in the event data generated by various devices. Our proposed Inductive machine learning method was used to build business process models based on actual event log data obtained from a hotel's Property Management System (PMS). The PMS can be considered as a Multi Agent System (MAS) because it is integrated with a variety of external systems and IoT devices. Collected event log combines data on guests stay recorded by hotel staff, as well as data streams captured from telephone exchange and other external IoT devices. Next, we performed automated analysis of the discovered process models using formal methods. Spin model checker was used to simulate process model executions and automatically verify the process model. We proposed an algorithm for the automatic transformation of the discovered process model into a verification model. Additionally, we developed a generator of positive and negative examples. In the verification stage, we have also used Linear temporal logic (LTL) to define requested system specifications. We find that the analysis results will be well suited for process model repair.


Extracting Seasonal Gradual Patterns from Temporal Sequence Data Using Periodic Patterns Mining

arXiv.org Artificial Intelligence

Mining frequent episodes aims at recovering sequential patterns from temporal data sequences, which can then be used to predict the occurrence of related events in advance. On the other hand, gradual patterns that capture co-variation of complex attributes in the form of " when X increases/decreases, Y increases/decreases" play an important role in many real world applications where huge volumes of complex numerical data must be handled. Recently, these patterns have received attention from the data mining community exploring temporal data who proposed methods to automatically extract gradual patterns from temporal data. However, to the best of our knowledge, no method has been proposed to extract gradual patterns that regularly appear at identical time intervals in many sequences of temporal data, despite the fact that such patterns may add knowledge to certain applications, such as e-commerce. In this paper, we propose to extract co-variations of periodically repeating attributes from the sequences of temporal data that we call seasonal gradual patterns. For this purpose, we formulate the task of mining seasonal gradual patterns as the problem of mining periodic patterns in multiple sequences and then we exploit periodic pattern mining algorithms to extract seasonal gradual patterns. We discuss specific features of these patterns and propose an approach for their extraction based on mining periodic frequent patterns common to multiple sequences. We also propose a new anti-monotonous support definition associated to these seasonal gradual patterns. The illustrative results obtained from some real world data sets show that the proposed approach is efficient and that it can extract small sets of patterns by filtering numerous nonseasonal patterns to identify the seasonal ones.


Hitachi develops 'ConSite Mine' to monitor and extend mining equipment life

#artificialintelligence

Hitachi Construction Machinery (HCM) and its consolidated subsidiary, Wenco International Mining Systems, have jointly developed "ConSite Mine", a new technology platform that helps resolve problems at mine sites by remotely monitoring mining machines on a 24/7 basis through the use of IoT and AI based analysis of equipment operations data. According to Hitachi, it has developed this technology to help customers and HCM dealers predict costly maintenance issues before they occur, such as the occurrence of cracks in excavator booms or arms, by utilising machine learning and applied analysis technologies. Detailed information from these predictive alerts are provided on the web-based ConSite Mine dashboard and other items. Currently, Hitachi is piloting the technology in Australia, Zambia and Indonesia. "ConSite Mine" will be further modified based on customer feedback before wider commercial release in 2021.


The Knowledge Graph for Macroeconomic Analysis with Alternative Big Data

arXiv.org Artificial Intelligence

The current knowledge system of macroeconomics is built on interactions among a small number of variables, since traditional macroeconomic models can mostly handle a handful of inputs. Recent work using big data suggests that a much larger number of variables are active in driving the dynamics of the aggregate economy. In this paper, we introduce a knowledge graph (KG) that consists of not only linkages between traditional economic variables but also new alternative big data variables. We extract these new variables and the linkages by applying advanced natural language processing (NLP) tools on the massive textual data of academic literature and research reports. As one example of the potential applications, we use it as the prior knowledge to select variables for economic forecasting models in macroeconomics. Compared to statistical variable selection methods, KG-based methods achieve significantly higher forecasting accuracy, especially for long run forecasts.


Predictive maintenance and decision support systems in heavy industry

#artificialintelligence

Digital transformation is one of the top priorities for industrial companies. The largest players are already moving in this direction, for many years continuously working to improve production efficiency and launching large-scale optimisation programs. They're called advanced analytics or digital innovation, and at their core, the technology could be summarised under artificial intelligence. In all cases, the efforts to utilise AI models or data analytics systems are part of a bigger digital transformation effort of the progressing companies. In an industrial context, such strategies for cost-saving and process optimisation often start from pilot projects, or top management directives for digital change guide them. In general, changes in processes or investments in capital-intensive and competitive industries require large sums of money. Traditional capital expenditures usually stretch over a long period, so a current financial standing may not allow for a complete physical overhaul of the plants or facilities. These high costs lead to the search for cheaper alternatives.


Top 8 Data Mining Techniques In Machine Learning

#artificialintelligence

Data mining is considered to be one of the popular terms of machine learning as it extracts meaningful information from the large pile of datasets and is used for decision-making tasks. It is a technique to identify patterns in a pre-built database and is used quite extensively by organisations as well as academia. The various aspects of data mining include data cleaning, data integration, data transformation, data discretisation, pattern evaluation and more. Below, we have listed the top eight data mining techniques in machine learning that is most used by data scientists. Association Rule Learning is one of the unsupervised data mining techniques in which an item set is defined as a collection of one or more items.


Process Mining Meets Causal Machine Learning: Discovering Causal Rules from Event Logs

arXiv.org Machine Learning

This paper proposes an approach to analyze an event log of a business process in order to generate case-level recommendations of treatments that maximize the probability of a given outcome. Users classify the attributes in the event log into controllable and non-controllable, where the former correspond to attributes that can be altered during an execution of the process (the possible treatments). We use an action rule mining technique to identify treatments that co-occur with the outcome under some conditions. Since action rules are generated based on correlation rather than causation, we then use a causal machine learning technique, specifically uplift trees, to discover subgroups of cases for which a treatment has a high causal effect on the outcome after adjusting for confounding variables. We test the relevance of this approach using an event log of a loan application process and compare our findings with recommendations manually produced by process mining experts.


Top 5 Gold Mines of Data Science and Machine Learning Resources

#artificialintelligence

Are you a data science and machine learning enthusiast who wants to create a data science learning plan with important checkpoints/milestones? If yes then this GitHub repo is for you.


Ensemble learning reveals dissimilarity between rare-earth transition metal binary alloys with respect to the Curie temperature

arXiv.org Machine Learning

We propose a data-driven method to extract dissimilarity between materials, with respect to a given target physical property. The technique is based on an ensemble method with Kernel ridge regression as the predicting model; multiple random subset sampling of the materials is done to generate prediction models and the corresponding contributions of the reference training materials in detail. The distribution of the predicted values for each material can be approximated by a Gaussian mixture model. The reference training materials contributed to the prediction model that accurately predicts the physical property value of a specific material, are considered to be similar to that material, or vice versa. Evaluations using synthesized data demonstrate that the proposed method can effectively measure the dissimilarity between data instances. An application of the analysis method on the data of Curie temperature (TC) of binary 3d transition metal 4f rare earth binary alloys also reveals meaningful results on the relations between the materials. The proposed method can be considered as a potential tool for obtaining a deeper understanding of the structure of data, with respect to a target property, in particular.