Well File:


Accelerating Entrepreneurial Decision-Making Through Hybrid Intelligence

arXiv.org Artificial Intelligence

AI - Artificial Intelligence AGI - Artificial General Intelligence ANN - Artificial Neural Network ANOVA - Analysis of Variance ANT - Actor Network Theory API - Application Programming Interface APX - Amsterdam Power Exchange AVE - Average Variance Extracted BU - Business Unit CART - Classification and Regression Tree CBMV - Crowd-based Business Model Validation CR - Composite Reliability CT - Computed Tomography CVC - Corporate Venture Capital DR - Design Requirement DP - Design Principle DSR - Design Science Research DSS - Decision Support System EEX - European Energy Exchange FsQCA - Fuzzy-Set Qualitative Comparative Analysis GUI - Graphical User Interface HI-DSS - Hybrid Intelligence Decision Support System HIT - Human Intelligence Task IoT - Internet of Things IS - Information System IT - Information Technology MCC - Matthews Correlation Coefficient ML - Machine Learning OCT - Opportunity Creation Theory OGEMA 2.0 - Open Gateway Energy Management 2.0 OS - Operating System R&D - Research & Development RE - Renewable Energies RQ - Research Question SVM - Support Vector Machine SSD - Solid-State Drive SDK - Software Development Kit TCP/IP - Transmission Control Protocol/Internet Protocol TCT - Transaction Cost Theory UI - User Interface VaR - Value at Risk VC - Venture Capital VPP - Virtual Power Plant Chapter I

A Taxonomy and Survey of Intrusion Detection System Design Techniques, Network Threats and Datasets

arXiv.org Artificial Intelligence

With the world moving towards being increasingly dependent on computers and automation, one of the main challenges in the current decade has been to build secure applications, systems and networks. Alongside these challenges, the number of threats is rising exponentially due to the attack surface increasing through numerous interfaces offered for each service. To alleviate the impact of these threats, researchers have proposed numerous solutions; however, current tools often fail to adapt to ever-changing architectures, associated threats and 0-days. This manuscript aims to provide researchers with a taxonomy and survey of current dataset composition and current Intrusion Detection Systems (IDS) capabilities and assets. These taxonomies and surveys aim to improve both the efficiency of IDS and the creation of datasets to build the next generation IDS as well as to reflect networks threats more accurately in future datasets. To this end, this manuscript also provides a taxonomy and survey or network threats and associated tools. The manuscript highlights that current IDS only cover 25% of our threat taxonomy, while current datasets demonstrate clear lack of real-network threats and attack representation, but rather include a large number of deprecated threats, hence limiting the accuracy of current machine learning IDS. Moreover, the taxonomies are open-sourced to allow public contributions through a Github repository.

Time-Sensitive Bayesian Information Aggregation for Crowdsourcing Systems

Journal of Artificial Intelligence Research

Many aspects of the design of efficient crowdsourcing processes, such as defining worker’s bonuses, fair prices and time limits of the tasks, involve knowledge of the likely duration of the task at hand. In this work we introduce a new time–sensitive Bayesian aggregation method that simultaneously estimates a task’s duration and obtains reliable aggregations of crowdsourced judgments. Our method, called BCCTime, uses latent variables to represent the uncertainty about the workers’ completion time, the tasks’ duration and the workers’ accuracy. To relate the quality of a judgment to the time a worker spends on a task, our model assumes that each task is completed within a latent time window within which all workers with a propensity to genuinely attempt the labelling task (i.e., no spammers) are expected to submit their judgments. In contrast, workers with a lower propensity to valid labelling, such as spammers, bots or lazy labellers, are assumed to perform tasks considerably faster or slower than the time required by normal workers. Specifically, we use efficient message-passing Bayesian inference to learn approximate posterior probabilities of (i) the confusion matrix of each worker, (ii) the propensity to valid labelling of each worker, (iii) the unbiased duration of each task and (iv) the true label of each task. Using two real- world public datasets for entity linking tasks, we show that BCCTime produces up to 11% more accurate classifications and up to 100% more informative estimates of a task’s duration compared to state–of–the–art methods.