Image Understanding

Image Classification in Machine Learning [Intro + Tutorial]


Image Classification is one of the most fundamental tasks in computer vision. It has revolutionized and propelled technological advancements in the most prominent fields, including the automobile industry, healthcare, manufacturing, and more. How does Image Classification work, and what are its benefits and limitations? Keep reading, and in the next few minutes, you'll learn the following: Image Classification (often referred to as Image Recognition) is the task of associating one (single-label classification) or more (multi-label classification) labels to a given image. Here's how it looks like in practice when classifying different birds-- images are tagged using V7. Image Classification is a solid task to benchmark modern architectures and methodologies in the domain of computer vision. Now let's briefly discuss two types of Image Classification, depending on the complexity of the classification task at hand. Single-label classification is the most common classification task in supervised Image Classification.

Image Classification model by Microsoft Lobe in Power Apps – Part 1


With the growth in technology we have seen an incline towards the technologies related to Machine Learning and Artificial Intelligence in our day-to-day life. In recent few years Microsoft has been pushing Low-Code/ No-Code ideology and have been incorporating ML and AI technologies in their PCF control, AI Builder Models, etc. Evidence of this can be seen in the recent PCF control like Business card Scanner, Document Automation models, etc. In this blog series, we will be seeing the Image classification model by Lobe which is currently in preview. Microsoft Lobe is a free desktop application provided by Microsoft which can be used to classify Images into labels.

Hyperspectral Imaging Enables Improved Machine Vision, Discussed by IDTechEx


Machine vision is increasingly important for many applications, such as object classification. However, relying on conventional RGB imaging is sometimes insufficient – the input images are just too similar, regardless of algorithmic sophistication. Hyperspectral imaging adds the extra dimension of wavelength to conventional images, providing a much richer data set. Rather than expressing an image using red, green, and blue (RGB) values at each pixel location, hyperspectral cameras instead record a complete spectrum at each point to create a 3D data set, sometimes referred to as a hyperspectral data cube. The additional spectral dimension facilitates supervised learning algorithms that can characterize visually indistinguishable objects – capabilities that are highly desirable across multiple application sectors.

Peloton's Motion-Tracking Coaching Camera Is Finally Available and Slightly More Affordable


Although Peloton already puts cameras in its exercise bikes and treadmills, the new Peloton Guide, which is finally available after being first announced in November, is the company's first camera-specific device that uses AI-powered motion tracking to monitor your form and routines while you work out from home. There are a few notable changes between the version of the Peloton Guide that was announced late last year and the version that's finally now available--at least in the US, Canada, the UK, and Australia to start. The steep $495 price tag, which actually made the Guide one of the most affordable products Peloton offers, has dropped to just $295. Part of the pricing change no doubt comes from the company's attempts to lure new users while people slowly return to gyms as the world has seemingly stopped caring about the ongoing pandemic. But the original version of the Peloton Guide was also going to include an armband heart monitor which is now an optional $90 add-on. It can also be purchased in a pricier $545 bundle with three sets of dumbbells and a mat for users not already equipped for strength training at home.

Are You Sure That You Can Implement Image Classification Networks?


Originally published on Towards AI the World's Leading AI and Technology News and Media Company. If you are building an AI-related product or service, we invite you to consider becoming an AI sponsor. At Towards AI, we help scale AI and technology startups. Let us help you unleash your technology to the masses. It's free, we don't spam, and we never share your email address.

When it comes to AI, can we ditch the datasets?


Huge amounts of data are needed to train machine-learning models to perform image classification tasks, such as identifying damage in satellite photos following a natural disaster. However, these data are not always easy to come by. Datasets may cost millions of dollars to generate, if usable data exist in the first place, and even the best datasets often contain biases that negatively impact a model's performance. To circumvent some of the problems presented by datasets, MIT researchers developed a method for training a machine learning model that, rather than using a dataset, uses a special type of machine-learning model to generate extremely realistic synthetic data that can train another model for downstream vision tasks. Their results show that a contrastive representation learning model trained using only these synthetic data is able to learn visual representations that rival or even outperform those learned from real data.

Satellite Image Classification With Deep Learning


In this tutorial, you'll see how to build a satellite image classifier using Python and Tensorflow. Satellite image classification is an important task when it comes down to agriculture, crop/forest monitoring, or even in urban scenarios, with planning tasks. We're going to use the EuroSAT dataset, which consists of Sentinel-2 satellite images covering…

Neural Style Transfer Tutorial


Neural Style Transfer is a technique that applies the Style of 1 image to the content of another image. It's a generative algorithm meaning that the algorithm generates an image as the output. As you're probably wondering, how does it work? In this post, we'll be explaining how the vanilla Neural Style Transfer algorithm adds different styles to an image and what makes the algorithm unique and interesting. Both Style Transfer and traditional GANs share the similarity of being able to generate images as the output.

Two-Stage Architectural Fine-Tuning with Neural Architecture Search using Early-Stopping in Image Classification Artificial Intelligence

Deep neural networks (NN) perform well in various tasks (e.g., computer vision) because of the convolutional neural networks (CNN). However, the difficulty of gathering quality data in the industry field hinders the practical use of NN. To cope with this issue, the concept of transfer learning (TL) has emerged, which leverages the fine-tuning of NNs trained on large-scale datasets in data-scarce situations. Therefore, this paper suggests a two-stage architectural fine-tuning method for image classification, inspired by the concept of neural architecture search (NAS). One of the main ideas of our proposed method is a mutation with base architectures, which reduces the search cost by using given architectural information. Moreover, an early-stopping is also considered which directly reduces NAS costs. Experimental results verify that our proposed method reduces computational and searching costs by up to 28.2% and 22.3%, compared to existing methods.

Fairness Indicators for Systematic Assessments of Visual Feature Extractors Artificial Intelligence

Does everyone equally benefit from computer vision systems? Answers to this question become more and more important as computer vision systems are deployed at large scale, and can spark major concerns when they exhibit vast performance discrepancies between people from various demographic and social backgrounds. Systematic diagnosis of fairness, harms, and biases of computer vision systems is an important step towards building socially responsible systems. To initiate an effort towards standardized fairness audits, we propose three fairness indicators, which aim at quantifying harms and biases of visual systems. Our indicators use existing publicly available datasets collected for fairness evaluations, and focus on three main types of harms and bias identified in the literature, namely harmful label associations, disparity in learned representations of social and demographic traits, and biased performance on geographically diverse images from across the world.We define precise experimental protocols applicable to a wide range of computer vision models. These indicators are part of an ever-evolving suite of fairness probes and are not intended to be a substitute for a thorough analysis of the broader impact of the new computer vision technologies. Yet, we believe it is a necessary first step towards (1) facilitating the widespread adoption and mandate of the fairness assessments in computer vision research, and (2) tracking progress towards building socially responsible models. To study the practical effectiveness and broad applicability of our proposed indicators to any visual system, we apply them to off-the-shelf models built using widely adopted model training paradigms which vary in their ability to whether they can predict labels on a given image or only produce the embeddings. We also systematically study the effect of data domain and model size.