Collaborating Authors


A deep learning framework to estimate the pose of robotic arms and predict their movements


As robots are gradually introduced into various real-world environments, developers and roboticists will need to ensure that they can safely operate around humans. In recent years, they have introduced various approaches for estimating the positions and predicting the movements of robots in real-time. Researchers at the Universidade Federal de Pernambuco in Brazil have recently created a new deep learning model to estimate the pose of robotic arms and predict their movements. This model, introduced in a paper pre-published on arXiv, is specifically designed to enhance the safety of robots while they are collaborating or interacting with humans. "Motivated by the need to anticipate accidents during human-robot interaction (HRI), we explore a framework that improves the safety of people working in close proximity to robots," Djamel H. Sadok, one of the researchers who carried out the study, told TechXplore.

Artificial Intelligence Ethics and Safety: practical tools for creating "good" models Artificial Intelligence

The AI Robotics Ethics Society (AIRES) is a non-profit organization founded in 2018 by Aaron Hui to promote awareness and the importance of ethical implementation and regulation of AI. AIRES is now an organization with chapters at universities such as UCLA (Los Angeles), USC (University of Southern California), Caltech (California Institute of Technology), Stanford University, Cornell University, Brown University, and the Pontifical Catholic University of Rio Grande do Sul (Brazil). AIRES at PUCRS is the first international chapter of AIRES, and as such, we are committed to promoting and enhancing the AIRES Mission. Our mission is to focus on educating the AI leaders of tomorrow in ethical principles to ensure that AI is created ethically and responsibly. As there are still few proposals for how we should implement ethical principles and normative guidelines in the practice of AI system development, the goal of this work is to try to bridge this gap between discourse and praxis. Between abstract principles and technical implementation. In this work, we seek to introduce the reader to the topic of AI Ethics and Safety. At the same time, we present several tools to help developers of intelligent systems develop "good" models. This work is a developing guide published in English and Portuguese. Contributions and suggestions are welcome.

A Neurorobotics Approach to Behaviour Selection based on Human Activity Recognition Artificial Intelligence

Behaviour selection has been an active research topic for robotics, in particular in the field of human-robot interaction. For a robot to interact effectively and autonomously with humans, the coupling between techniques for human activity recognition, based on sensing information, and robot behaviour selection, based on decision-making mechanisms, is of paramount importance. However, most approaches to date consist of deterministic associations between the recognised activities and the robot behaviours, neglecting the uncertainty inherent to sequential predictions in real-time applications. In this paper, we address this gap by presenting a neurorobotics approach based on computational models that resemble neurophysiological aspects of living beings. This neurorobotics approach was compared to a non-bioinspired, heuristics-based approach. To evaluate both approaches, a robot simulation is developed, in which a mobile robot has to accomplish tasks according to the activity being performed by the inhabitant of an intelligent home. The outcomes of each approach were evaluated according to the number of correct outcomes provided by the robot. Results revealed that the neurorobotics approach is advantageous, especially considering the computational models based on more complex animals.

Watershed of Artificial Intelligence: Human Intelligence, Machine Intelligence, and Biological Intelligence Artificial Intelligence

This article reviews the "Once learning" mechanism that was proposed 23 years ago and the subsequent successes of "One-shot learning" in image classification and "You Only Look Once - YOLO" in objective detection. Analyzing the current development of Artificial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.

Deep Reinforcement Learning with Interactive Feedback in a Human-Robot Environment Artificial Intelligence

Robots are extending their presence in domestic environments every day, being more common to see them carrying out tasks in home scenarios. In the future, robots are expected to increasingly perform more complex tasks and, therefore, be able to acquire experience from different sources as quickly as possible. A plausible approach to address this issue is interactive feedback, where a trainer advises a learner on which actions should be taken from specific states to speed up the learning process. Moreover, deep reinforcement learning has been recently widely utilized in robotics to learn the environment and acquire new skills autonomously. However, an open issue when using deep reinforcement learning is the excessive time needed to learn a task from raw input images. In this work, we propose a deep reinforcement learning approach with interactive feedback to learn a domestic task in a human-robot scenario. We compare three different learning methods using a simulated robotic arm for the task of organizing different objects; the proposed methods are (i) deep reinforcement learning (DeepRL); (ii) interactive deep reinforcement learning using a previously trained artificial agent as an advisor (agent-IDeepRL); and (iii) interactive deep reinforcement learning using a human advisor (human-IDeepRL). We demonstrate that interactive approaches provide advantages for the learning process. The obtained results show that a learner agent, using either agent-IDeepRL or human-IDeepRL, completes the given task earlier and has fewer mistakes compared to the autonomous DeepRL approach.

Traffic Light Recognition Using Deep Learning and Prior Maps for Autonomous Cars Machine Learning

Autonomous terrestrial vehicles must be capable of perceiving traffic lights and recognizing their current states to share the streets with human drivers. Most of the time, human drivers can easily identify the relevant traffic lights. To deal with this issue, a common solution for autonomous cars is to integrate recognition with prior maps. However, additional solution is required for the detection and recognition of the traffic light. Deep learning techniques have showed great performance and power of generalization including traffic related problems. Motivated by the advances in deep learning, some recent works leveraged some state-of-the-art deep detectors to locate (and further recognize) traffic lights from 2D camera images. However, none of them combine the power of the deep learning-based detectors with prior maps to recognize the state of the relevant traffic lights. Based on that, this work proposes to integrate the power of deep learning-based detection with the prior maps used by our car platform IARA (acronym for Intelligent Autonomous Robotic Automobile) to recognize the relevant traffic lights of predefined routes. The process is divided in two phases: an offline phase for map construction and traffic lights annotation; and an online phase for traffic light recognition and identification of the relevant ones. The proposed system was evaluated on five test cases (routes) in the city of Vit\'oria, each case being composed of a video sequence and a prior map with the relevant traffic lights for the route. Results showed that the proposed technique is able to correctly identify the relevant traffic light along the trajectory.