Goto

Collaborating Authors

Results


Explainable AI for B5G/6G: Technical Aspects, Use Cases, and Research Challenges

arXiv.org Artificial Intelligence

When 5G began its commercialisation journey around 2020, the discussion on the vision of 6G also surfaced. Researchers expect 6G to have higher bandwidth, coverage, reliability, energy efficiency, lower latency, and, more importantly, an integrated "human-centric" network system powered by artificial intelligence (AI). Such a 6G network will lead to an excessive number of automated decisions made every second. These decisions can range widely, from network resource allocation to collision avoidance for self-driving cars. However, the risk of losing control over decision-making may increase due to high-speed data-intensive AI decision-making beyond designers and users' comprehension. The promising explainable AI (XAI) methods can mitigate such risks by enhancing the transparency of the black box AI decision-making process. This survey paper highlights the need for XAI towards the upcoming 6G age in every aspect, including 6G technologies (e.g., intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0). Moreover, we summarised the lessons learned from the recent attempts and outlined important research challenges in applying XAI for building 6G systems. This research aligns with goals 9, 11, 16, and 17 of the United Nations Sustainable Development Goals (UN-SDG), promoting innovation and building infrastructure, sustainable and inclusive human settlement, advancing justice and strong institutions, and fostering partnership at the global level.


Accelerating Entrepreneurial Decision-Making Through Hybrid Intelligence

arXiv.org Artificial Intelligence

AI - Artificial Intelligence AGI - Artificial General Intelligence ANN - Artificial Neural Network ANOVA - Analysis of Variance ANT - Actor Network Theory API - Application Programming Interface APX - Amsterdam Power Exchange AVE - Average Variance Extracted BU - Business Unit CART - Classification and Regression Tree CBMV - Crowd-based Business Model Validation CR - Composite Reliability CT - Computed Tomography CVC - Corporate Venture Capital DR - Design Requirement DP - Design Principle DSR - Design Science Research DSS - Decision Support System EEX - European Energy Exchange FsQCA - Fuzzy-Set Qualitative Comparative Analysis GUI - Graphical User Interface HI-DSS - Hybrid Intelligence Decision Support System HIT - Human Intelligence Task IoT - Internet of Things IS - Information System IT - Information Technology MCC - Matthews Correlation Coefficient ML - Machine Learning OCT - Opportunity Creation Theory OGEMA 2.0 - Open Gateway Energy Management 2.0 OS - Operating System R&D - Research & Development RE - Renewable Energies RQ - Research Question SVM - Support Vector Machine SSD - Solid-State Drive SDK - Software Development Kit TCP/IP - Transmission Control Protocol/Internet Protocol TCT - Transaction Cost Theory UI - User Interface VaR - Value at Risk VC - Venture Capital VPP - Virtual Power Plant Chapter I


Tackling Climate Change with Machine Learning

arXiv.org Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.