Collaborating Authors


A Survey on Applications of Digital Human Avatars toward Virtual Co-presence Artificial Intelligence

This paper investigates different approaches to build and use digital human avatars toward interactive Virtual Co-presence (VCP) environments. We evaluate the evolution of technologies for creating VCP environments and how the advancement in Artificial Intelligence (AI) and Computer Graphics affect the quality of VCP environments. We categorize different methods in the literature based on their applications and methodology and compare various groups and strategies based on their applications, contributions, and limitations. We also have a brief discussion about the approaches that other forms of human representation, rather than digital human avatars, have been utilized in VCP environments. Our goal is to fill the gap in the research domain where there is a lack of literature review investigating different approaches for creating avatar-based VCP environments. We hope this study will be useful for future research involving human representation in VCP or Virtual Reality (VR) environments. To the best of our knowledge, it is the first survey research that investigates avatar-based VCP environments. Specifically, the categorization methodology suggested in this paper for avatar-based methods is new.

Randomized Classifiers vs Human Decision-Makers: Trustworthy AI May Have to Act Randomly and Society Seems to Accept This Artificial Intelligence

As \emph{artificial intelligence} (AI) systems are increasingly involved in decisions affecting our lives, ensuring that automated decision-making is fair and ethical has become a top priority. Intuitively, we feel that akin to human decisions, judgments of artificial agents should necessarily be grounded in some moral principles. Yet a decision-maker (whether human or artificial) can only make truly ethical (based on any ethical theory) and fair (according to any notion of fairness) decisions if full information on all the relevant factors on which the decision is based are available at the time of decision-making. This raises two problems: (1) In settings, where we rely on AI systems that are using classifiers obtained with supervised learning, some induction/generalization is present and some relevant attributes may not be present even during learning. (2) Modeling such decisions as games reveals that any -- however ethical -- pure strategy is inevitably susceptible to exploitation. Moreover, in many games, a Nash Equilibrium can only be obtained by using mixed strategies, i.e., to achieve mathematically optimal outcomes, decisions must be randomized. In this paper, we argue that in supervised learning settings, there exist random classifiers that perform at least as well as deterministic classifiers, and may hence be the optimal choice in many circumstances. We support our theoretical results with an empirical study indicating a positive societal attitude towards randomized artificial decision-makers, and discuss some policy and implementation issues related to the use of random classifiers that relate to and are relevant for current AI policy and standardization initiatives.

Image-Guided Navigation of a Robotic Ultrasound Probe for Autonomous Spinal Sonography Using a Shadow-aware Dual-Agent Framework Artificial Intelligence

Ultrasound (US) imaging is commonly used to assist in the diagnosis and interventions of spine diseases, while the standardized US acquisitions performed by manually operating the probe require substantial experience and training of sonographers. In this work, we propose a novel dual-agent framework that integrates a reinforcement learning (RL) agent and a deep learning (DL) agent to jointly determine the movement of the US probe based on the real-time US images, in order to mimic the decision-making process of an expert sonographer to achieve autonomous standard view acquisitions in spinal sonography. Moreover, inspired by the nature of US propagation and the characteristics of the spinal anatomy, we introduce a view-specific acoustic shadow reward to utilize the shadow information to implicitly guide the navigation of the probe toward different standard views of the spine. Our method is validated in both quantitative and qualitative experiments in a simulation environment built with US data acquired from 17 volunteers. The average navigation accuracy toward different standard views achieves 5.18mm/5.25deg and 12.87mm/17.49deg in the intra- and inter-subject settings, respectively. The results demonstrate that our method can effectively interpret the US images and navigate the probe to acquire multiple standard views of the spine.

Partner-Aware Algorithms in Decentralized Cooperative Bandit Teams Machine Learning

When humans collaborate with each other, they often make decisions by observing others and considering the consequences that their actions may have on the entire team, instead of greedily doing what is best for just themselves. We would like our AI agents to effectively collaborate in a similar way by capturing a model of their partners. In this work, we propose and analyze a decentralized Multi-Armed Bandit (MAB) problem with coupled rewards as an abstraction of more general multi-agent collaboration. We demonstrate that na\"ive extensions of single-agent optimal MAB algorithms fail when applied for decentralized bandit teams. Instead, we propose a Partner-Aware strategy for joint sequential decision-making that extends the well-known single-agent Upper Confidence Bound algorithm. We analytically show that our proposed strategy achieves logarithmic regret, and provide extensive experiments involving human-AI and human-robot collaboration to validate our theoretical findings. Our results show that the proposed partner-aware strategy outperforms other known methods, and our human subject studies suggest humans prefer to collaborate with AI agents implementing our partner-aware strategy.

The Who in Explainable AI: How AI Background Shapes Perceptions of AI Explanations Artificial Intelligence

Explainability of AI systems is critical for users to take informed actions and hold systems accountable. While "opening the opaque box" is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, we conduct a mixed-methods study of how two different groups of whos--people with and without a background in AI--perceive different types of AI explanations. These groups were chosen to look at how disparities in AI backgrounds can exacerbate the creator-consumer gap. We quantitatively share what the perceptions are along five dimensions: confidence, intelligence, understandability, second chance, and friendliness. Qualitatively, we highlight how the AI background influences each group's interpretations and elucidate why the differences might exist through the lenses of appropriation and cognitive heuristics. We find that (1) both groups had unwarranted faith in numbers, to different extents and for different reasons, (2) each group found explanatory values in different explanations that went beyond the usage we designed them for, and (3) each group had different requirements of what counts as humanlike explanations. Using our findings, we discuss potential negative consequences such as harmful manipulation of user trust and propose design interventions to mitigate them. By bringing conscious awareness to how and why AI backgrounds shape perceptions of potential creators and consumers in XAI, our work takes a formative step in advancing a pluralistic Human-centered Explainable AI discourse.

Robo-assisted surgery has no clear advantage over normal ones: Researchers


There are no clear advantages to using robots during surgery, according to researchers from the University of Texas. In a study, the researchers reviewed 50 published randomised controlled trials comprising more than 4,800 patients to assess the quality of evidence and outcomes for robot-assisted open surgery compared with laparoscopy, open surgery, or both. From reviewing those studies, the researchers found a majority of the findings demonstrated there were no clear advantages gained from performing robot-assisted surgeries when looking at intraoperative complications, conversion rates to open surgery, and long-term outcomes despite robot-assisted surgeries often coming with "extreme costs". The initial cost of the most prevalent robotic platform is $1.5 million, the researchers said, which does not account for additional costs such as upkeep or training people to use the robots. In addition to the big cost, the researchers said robot-assisted surgeries usually took longer to complete despite there being no obvious differences in the results compared with standard surgeries.

Smart Healthcare in the Age of AI: Recent Advances, Challenges, and Future Prospects Artificial Intelligence

The significant increase in the number of individuals with chronic ailments (including the elderly and disabled) has dictated an urgent need for an innovative model for healthcare systems. The evolved model will be more personalized and less reliant on traditional brick-and-mortar healthcare institutions such as hospitals, nursing homes, and long-term healthcare centers. The smart healthcare system is a topic of recently growing interest and has become increasingly required due to major developments in modern technologies, especially in artificial intelligence (AI) and machine learning (ML). This paper is aimed to discuss the current state-of-the-art smart healthcare systems highlighting major areas like wearable and smartphone devices for health monitoring, machine learning for disease diagnosis, and the assistive frameworks, including social robots developed for the ambient assisted living environment. Additionally, the paper demonstrates software integration architectures that are very significant to create smart healthcare systems, integrating seamlessly the benefit of data analytics and other tools of AI. The explained developed systems focus on several facets: the contribution of each developed framework, the detailed working procedure, the performance as outcomes, and the comparative merits and limitations. The current research challenges with potential future directions are addressed to highlight the drawbacks of existing systems and the possible methods to introduce novel frameworks, respectively. This review aims at providing comprehensive insights into the recent developments of smart healthcare systems to equip experts to contribute to the field.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines Artificial Intelligence

While machine learning algorithms excel at many challenging visual tasks, it is unclear that they can make predictions about commonplace real world physical events. Here, we present a visual and physical prediction benchmark that precisely measures this capability. In realistically simulating a wide variety of physical phenomena -- rigid and soft-body collisions, stable multi-object configurations, rolling and sliding, projectile motion -- our dataset presents a more comprehensive challenge than existing benchmarks. Moreover, we have collected human responses for our stimuli so that model predictions can be directly compared to human judgments. We compare an array of algorithms -- varying in their architecture, learning objective, input-output structure, and training data -- on their ability to make diverse physical predictions. We find that graph neural networks with access to the physical state best capture human behavior, whereas among models that receive only visual input, those with object-centric representations or pretraining do best but fall far short of human accuracy. This suggests that extracting physically meaningful representations of scenes is the main bottleneck to achieving human-like visual prediction. We thus demonstrate how our benchmark can identify areas for improvement and measure progress on this key aspect of physical understanding.

VisuoSpatial Foresight for Physical Sequential Fabric Manipulation Artificial Intelligence

Robotic fabric manipulation has applications in home robotics, textiles, senior care and surgery. Existing fabric manipulation techniques, however, are designed for specific tasks, making it difficult to generalize across different but related tasks. We build upon the Visual Foresight framework to learn fabric dynamics that can be efficiently reused to accomplish different sequential fabric manipulation tasks with a single goal-conditioned policy. We extend our earlier work on VisuoSpatial Foresight (VSF), which learns visual dynamics on domain randomized RGB images and depth maps simultaneously and completely in simulation. In this earlier work, we evaluated VSF on multi-step fabric smoothing and folding tasks against 5 baseline methods in simulation and on the da Vinci Research Kit (dVRK) surgical robot without any demonstrations at train or test time. A key finding was that depth sensing significantly improves performance: RGBD data yields an 80% improvement in fabric folding success rate in simulation over pure RGB data. In this work, we vary 4 components of VSF, including data generation, the choice of visual dynamics model, cost function, and optimization procedure. Results suggest that training visual dynamics models using longer, corner-based actions can improve the efficiency of fabric folding by 76% and enable a physical sequential fabric folding task that VSF could not previously perform with 90% reliability. Code, data, videos, and supplementary material are available at

Optimal Assistance for Object-Rearrangement Tasks in Augmented Reality Artificial Intelligence

Augmented-reality (AR) glasses that will have access to onboard sensors and an ability to display relevant information to the user present an opportunity to provide user assistance in quotidian tasks. Many such tasks can be characterized as object-rearrangement tasks. We introduce a novel framework for computing and displaying AR assistance that consists of (1) associating an optimal action sequence with the policy of an embodied agent and (2) presenting this sequence to the user as suggestions in the AR system's heads-up display. The embodied agent comprises a "hybrid" between the AR system and the user, with the AR system's observation space (i.e., sensors) and the user's action space (i.e., task-execution actions); its policy is learned by minimizing the task-completion time. In this initial study, we assume that the AR system's observations include the environment's map and localization of the objects and the user. These choices allow us to formalize the problem of computing AR assistance for any object-rearrangement task as a planning problem, specifically as a capacitated vehicle-routing problem. Further, we introduce a novel AR simulator that can enable web-based evaluation of AR-like assistance and associated at-scale data collection via the Habitat simulator for embodied artificial intelligence. Finally, we perform a study that evaluates user response to the proposed form of AR assistance on a specific quotidian object-rearrangement task, house cleaning, using our proposed AR simulator on mechanical turk. In particular, we study the effect of the proposed AR assistance on users' task performance and sense of agency over a range of task difficulties. Our results indicate that providing users with such assistance improves their overall performance and while users report a negative impact to their agency, they may still prefer the proposed assistance to having no assistance at all.